EI、Scopus 收录
中文核心期刊
Lin Jian, Lu Hongbo, Wang Ruiting, Jin Yi, Wu Hengyi, Ji Feng, Chen Xing, Yang Fujiang, Wei Baoxi. Establishing process of scramjet flow and ethylene-burning at Ma10 conditions of FD-21 shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1788-1799. DOI: 10.6052/0459-1879-23-194
Citation: Lin Jian, Lu Hongbo, Wang Ruiting, Jin Yi, Wu Hengyi, Ji Feng, Chen Xing, Yang Fujiang, Wei Baoxi. Establishing process of scramjet flow and ethylene-burning at Ma10 conditions of FD-21 shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1788-1799. DOI: 10.6052/0459-1879-23-194

ESTABLISHING PROCESS OF SCRAMJET FLOW AND ETHYLENE-BURNING AT Ma10 CONDITIONS OF FD-21 SHOCK TUNNEL

  • Received Date: May 20, 2023
  • Accepted Date: June 28, 2023
  • Available Online: June 29, 2023
  • To explore the practicability of the free-jet experimental study on the scramjet fueled hydrocarbon, several tests of a three-dimensional scramjet were conducted at Ma10 simulated conditions of FD-21 piston-driven high enthalpy shock tunnel. The test article was the scramjet including a curved-surface compression inlet, a nearly constant rectangular-section isolator, a little divergent combustor with a cavity and a nozzle with the cross-section transition of rectangle to circle. The chemiluminescence visualization of the excited OH*/CH* radical along with the wall pressure measurement was developed to study the establishing process of scramjet flow and ethylene-burning. The temporal and spatial images of OH*/CH* in the combustor, together with the scramjet bodyside wall pressure data, were obtained for the tare without fuel injection and the ethylene injection conditions. For the tare condition, the OH* and CH* radicals in the combustor only exist at the first 1 ms period of the scramjet flow setup process, and the wall pressure of all taps tends to a plateau after a sharp increase at the air-flow arrival, revealing that the contamination of the diaphragm ablation can be ignored and a quasi-steady flow can be achieved. For the ethylene injection condition, a large number of OH* and CH* radicals emerge at the first 2 ms period of the scramjet flow setup process and then tend to a pseudo constant of a low OH* and an undetected CH* radical concentration, in spite of the wall pressure feature almost identical to that for the tare case. Additionally, the dramatic difference was achieved in the scramjet wall pressure distributions for the tare and the ethylene injection conditions, which was several orders of magnitude greater than the pressure fluctuation of the sample time interval. These evolving features of OH*/CH* radical and wall pressure data indicate an achievement of ethylene burning in hypervelocity flow, and the freejet experiment of a high Mach number scramjet fueled ethylene can be performed in FD-21 shock tunnel.
  • [1]
    Urzay J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2017, 50(1): 593-627
    [2]
    俞刚, 范学军. 超声速燃烧与高超声速推进. 力学进展, 2013, 43(5): 449-471 (Yu Gang, Fan Xuejun. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2013, 43(5): 449-471 (in Chinese)

    Yu G, Fan XJ. Supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2013, 43, 43(5): 449-471(in Chinese))
    [3]
    Curran ET. Scramjet engines: the first forty years. Journal of Propulsion and Power, 2001, 17(6): 1138-1148 doi: 10.2514/2.5875
    [4]
    姜宗林. 关于超声速燃烧与高超动力. 力学进展, 2021, 51(1): 130-140 (Jiang Zonglin. On supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2021, 51(1): 130-140 (in Chinese)

    Jiang ZL. On supersonic combustion and hypersonic propulsion. Advances in Mechanics, 2021, 51(1): 130-140 (in Chinese))
    [5]
    凌文辉, 侯金丽, 韦宝禧等. 空天组合动力技术挑战及解决途径的思考. 推进技术, 2018, 39(10): 2171-2176 (Ling Wenhui, Hou Jinli, Wei Baoxi, et al. Technical challenge and potential solution for aerospace combined cycle engine. Journal of Propulsion Technology, 2018, 39(10): 2171-2176 (in Chinese)

    LING Wen-hui, HOU Jin-li, WEI Bao-xi, GANG Qiang. Technical Challenge and Potential Solution for Aerospace Combined Cycle Engine. Journal of Propulsion Technology, 2018, 39(10): 2171-2176(in Chinese)
    [6]
    岳连捷, 张旭, 张启帆等. 高马赫数超燃冲压发动机技术研究进展, 力学学报, 2022, 54(2): 263-288

    Yue Lianjie, Zhang Xu, Zhang Qifan, et al. Research progress on high-Mach-number scramjet engine technologies. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 263-288 (in Chinese))
    [7]
    张时空, 李江, 黄志伟等. 高马赫数来流超燃冲压发动机燃烧流场分析. 宇航学报, 2017, 38(1): 80-88 (Zhang Shikong, Li Jiang, Huang Zhiwei, et al. Combustion flow field analysis of a scramjet engine at high Mach number. Journal of Astronautics, 2017, 38(1): 80-88 (in Chinese)

    ZHANG Shi-kong, LI Jiang, HUANG Zhi-wei, et al. Combustion Flow Field Analysis of a Scramjet Engine at High Mach Number. Journal of Astronautics, 2017, 38(1): 80-88(in Chinese))
    [8]
    杨甫江, 郭晟, 李亭荷. 更高马赫数超燃冲压发动机推阻力分析//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 大连, 2017
    [9]
    韩信, 刘云峰, 张子健等. 提高高马赫数超燃冲压发动机推力的理论方法. 力学学报, 2022, 54(3): 633-643 (Han Xin, Liu Yunfeng, Zhang Zijian, et al. The theoretical method to increase the thrust of high Mach number scramjets. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633-643 (in Chinese)

    Han Xin, Liu Yunfeng, Zhang Zijian, et al. The theoretical method to increase the thrust of high Mach number scramjets. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633-64(in Chinese))
    [10]
    何粲, 邢建文, 欧阳浩等. 飞行Ma12条件超燃冲压发动机流场及燃烧特征分析. 力学学报, 2022, 54(3): 622-632 (He Can, Xing Jianwen, Ouyang Hao, et al. Flow field and combustion characteristics analysis of scramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632 (in Chinese)

    He Can, Xing Jianwen, Ouyang Hao, et al. Flow field and combustion characteristics analysis of scramjet under Ma12 flight condition. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632(in Chinese))
    [11]
    韩亦宇, 张若凌, 邢建文等. 热力学非平衡对超燃冲压发动机冷态流动影响研究. 推进技术, 2022, 43(7): 210262 (Han Yiyu, Zhang Ruoling, Xing Jianwen, et al. Effects of thermal nonequilibrium on cold flow in scramjets. Journal of Propulsion Technology, 2022, 43(7): 210262 (in Chinese)

    HAN Yi-yu, ZHANG Ruo-ling, XING Jian-wen, et al. Effects of Thermal Nonequilibrium on Cold Flow in Scramjets. Journal of Propulsion Technology, 2022, 43(7): 210262(in Chinese))
    [12]
    张启帆, 岳连捷, 贾轶楠等. 真实气体效应对Ma10级进气道流动的影响. 推进技术, 2019, 40(5): 1042-1050 (Zhang Qifan, Yue Lianjie, Jia Yinan, et al. Real-gas effects on hypersonic inlet flow at Mach 10. Journal of Propulsion Technology, 2019, 40(5): 1042-1050 (in Chinese)

    ZHANG Qi-fan, YUE Lian-jie, JIA Yi-nan, et al. Real-Gas Effects on Hypersonic Inlet Flow at Mach 10. Journal of Propulsion Technology, 2019, 40(5): 1042-1050(in Chinese)
    [13]
    徐雪睿, 仲峰泉, 岳连捷等. 马赫数10超燃冲压发动机燃烧室流动与传热分析变化特性分析. 推进技术, 出版中

    Xu Xuerui, Zhong Fengquan, Yue Lianjie, et al. Analytical study on flow and heat transfer characteristics of Mach 10 scramjet combustor. Journal of Propulsion Technology, in press (in Chinese)
    [14]
    Ao Y, Wu K, Lu HB, et al. Combustion dynamics of high Mach number scramjet under different inflow thermal nonequilibrium conditions. Acta Astronautica, 2023, 208: 281-295 doi: 10.1016/j.actaastro.2023.04.020
    [15]
    Dufrene A, Maclean M, Wadhams T, et al. Extension of LENS shock tunnel test times and lower Mach number capability (AIAA 2015-2017)//53rd AIAA Aerospace Sciences Meeting, Florida, 2015 (in Chinese))
    [16]
    Igra O, Seiler F. Experimental Methods of Shock Wave Research. Springer: New York, 2016
    [17]
    Stalker RJ, Pall A, Mee DJ, et al. Scramjets and shock tunnels-the Queensland experience. Progress in Aerospace Sciences, 2005, 41: 471-513 doi: 10.1016/j.paerosci.2005.08.002
    [18]
    Doherty LJ. An experimental investigation of an airframe integrated three-dimensional scramjet engine at a Mach 10 flight condition. [PhD Thesis]. Queensland: University of Queensland, 2014
    [19]
    Barth JE. Mixing and combustion enhancement in a Mach 12 shape-transitioning scramjet engine. [PhD Thesis]. Queensland: University of Queensland, 2014
    [20]
    Vanyai T. Experimental investigation of a 3D thermal compression scramjet using advanced optical techniques. [PhD Thesis]. Queensland: University of Queensland, 2018
    [21]
    Vanyai R, Landsberg WO, McIntyre TJ, et al. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor. Combustion and Flame, 2021, 226: 143-155 doi: 10.1016/j.combustflame.2020.11.037
    [22]
    Hiraiwa T, Ito K, Sato S, et al. Recent progress in scramjet/combined cycle engines at JAXA, Kakuda space center. Acta Astronautica, 2008, 63: 565-574 doi: 10.1016/j.actaastro.2008.04.011
    [23]
    Takahashi M, Sunami T, Hideyuki T, et al. Performance characteristics of a scramjet engine at Mach 10 to 15 flight condition (AIAA 2005-3350)//13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy, 2005
    [24]
    Laurence SJ, Karl S, Schramm MJ, et al. Transient fluid-combustion phenomena in a model scramjet. Journal of Fluid Mechanics, 2013, 722: 85-120 doi: 10.1017/jfm.2013.56
    [25]
    Laurence SJ, Lieber D, Schramm JM, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part I: Shock-tunnel experiments. Combustion and Flame, 2015, 162(4): 921-931 doi: 10.1016/j.combustflame.2014.09.016
    [26]
    Larsson J, Laurence S, Moreno IB, et al. Incipient thermal choking and stable shock-train formation in the heat-release region of a scramjet combustor. Part II: Large eddy simulations. Combustion and Flame, 2015, 162(4): 907-920 doi: 10.1016/j.combustflame.2014.09.017
    [27]
    Hannemann K, Schramm MJ, Karl S, et al. Enhancement of free flight force measurement technique for scramjet engine shock tunnel testing (AIAA 2017-2235)//21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 2017
    [28]
    姚轩宇. JF-12激波风洞超燃冲压发动机实验及污染气体效应影响研究. [博士论文]. 北京: 中国科学院大学, 2015

    Yao Xuanyu. Experimental study on the scramjet in JF-12 shock tunnel and its vitiation effects. [PhD Thesis]. Beijing: University of the Chinese Academy of Sciences (in Chinese)
    [29]
    姚轩宇, 王春, 喻江等. JF12激波风洞高Mach数超燃冲压发动机实验研究. 气体物理, 2019, 4(5): 25-31 (Yao Xuanyu, Wang Chun, Yu Jiang, et al. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 2019, 4(5): 25-31 (in Chinese)

    Yao XY, Wang C, Yu J, et al. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 2019, 4( 5): 25-31(in Chinese))
    [30]
    Jiang ZL, Zhang ZJ, Liu YF, et al. The criteria for hypersonic airbreathing propulsion and its experimental verification. Chinese Journal of Aeronautics, 2021, 34(3): 94-104 doi: 10.1016/j.cja.2020.11.001
    [31]
    张旭, 张启帆, 岳连捷等. 高马赫数燃烧强化的激波风洞试验研究. 力学学报, 2022, 54(5): 1403-1413

    Zhang Xu, Zhang Qifan, Yue Lianjie, et al. Shock-tunnel experimental study of combustion enhancement methods for a high-Mach-number scramjet. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1403-141 (in Chinese)
    [32]
    Zhou GX, Zhang X, Li JP, et al. Optical diagnostics in a detonation-driven direct-connected circular combustor fueled with hydrogen for Mach 10 scramjet. International Journal of Hydrogen Energy, 2021, 46: 27801-27815 doi: 10.1016/j.ijhydene.2021.06.004
    [33]
    吴里银, 孔小平, 李贤等. 马赫数10超燃冲压发动机激波风洞实验研究. 推进技术, 2021, 42(12): 2818-2825 (Wu Liyin, Kong Xiaoping, Li Xian, et al. Experimental study on a scramjet at Mach 10 in shock tunnel. Journal of Propulsion Technology, 2021, 42(12): 2818-2825 (in Chinese)

    WU Li-yin, KONG Xiao-ping, LI Xian, et al. Experimental Study on a Scramjet at Mach 10 in Shock Tunnel. Journal of Propulsion Technology, 2021, 2021, 42(12): 2818-2825(in Chinese)
    [34]
    赵荣娟, 刘施然, 周正等. 激波风洞超燃冲压发动机推力测量技术研究. 实验流体力学, 2022, 36(4): 103-108 (Zhang Rongjuan, Liu Shiran, Zhou Zheng, et al. Research of scramjet thrust test in shock tunnel. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108 (in Chinese) doi: 10.11729/syltlx20210025

    Zhang Rongjuan, Liu Shiran, Zhou Zheng, et al. Research of scramjet thrust test in shock tunnel. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 103-108(in Chinese)) doi: 10.11729/syltlx20210025
    [35]
    张冬青, 邓维鑫, 邢建文等. Ma10条件超燃冲压发动机自由射流试验过程. 航空动力学报, 2023, 38(3): 735-742 (Zhang Dongqing, Deng Weixin, Xing Jianwen, et al. Scramjet free-jet test process at Ma10 conditions. Journal of Aerospace Power, 2023, 38(3): 735-742 (in Chinese)

    ZHANG Dongqing, DENG Weixin, XING Jianwen, et al. Scramjet free-jet test process at Ma10 conditions. Journal of Aerospace Power, 2023, 38(3): 735-742(in Chinese))
    [36]
    陈勇富, 卢洪波, 文帅等. 激波风洞超燃冲压发动机推阻测量技术. 空气动力学学报, 2022, 40(1): 1-8 (Chen Yongfu, Lu Hongbo, Wen Shuai, et al. Thrust/drag measurement techniques of a free flight scramjet in a shock tunnel. Acta Aerodynamica Sinica, 2022, 40(1): 1-8 (in Chinese)

    CHEN YF, LU HB, WEN S, et al. Thrust/drag measurement techniques of a free flight scramjet in a shock tunnel. Acta Aerodynamica Sinica, 2022, 40(1): 1−8(in Chinese))
    [37]
    卢洪波, 陈星, 谌君谋等. 新建高焓激波风洞Ma = 8飞行模拟条件的实现与超燃实验. 气体物理, 2019, 4(5): 13-24 (Lu Hongbo, Chen Xing, Shen Junmou, et al. Flight condition achievement of Mach number 8 in a new shock tunnel of CAAA and its scramjet experimental investigation. Physics of Gases, 2019, 4(5): 13-24 (in Chinese)

    LU Hong-bo, CHEN Xing, SHEN Jun-mou, et al. Flight Condition Achievement of Mach Number 8 in a New Shock Tunnel of CAAA and its Scramjet Experimental Investigation. Physics of Gases, 2019, 4(5): 13-24(in Chinese))
    [38]
    卢洪波, 陈星, 曾宪政等. FD-21风洞Ma = 10高超声速推进试验技术探索. 气体物理, 2022, 7(2): 1-12 (Lu Hongbo, Chen Xing, Zeng Xianzheng, et al. Exploration of experimental techniques on Ma = 10 scramjets in FD-21 high enthalpy shock tunnel. Physics of Gases, 2022, 7(2): 1-12 (in Chinese)

    LU Hong-bo, CHEN Xing, ZENG Xian-zheng, et al. Exploration of Experimental Techniques on Ma = 10 Scramjets in FD-21 High Enthalpy Shock Tunnel. Physics of Gases, 2022, 7(2): 1-12(in Chinese))
    [39]
    Gu S, Olivier H. Capabilities and limitations of existing hypersonic facilities. Progress in Aerospace Sciences, 2020, 113: 100607
    [40]
    Tanno T, Komuro T, Sato T, et al. Experimental study on flow establishment in a large scale scramjet (AIAA 2001-1889)//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 2001
    [41]
    刘朝阳. 超声速气流中壁面燃料射流混合、点火及稳燃机制研究. [博士论文]. 长沙: 国防科技大学, 2019

    Liu Changyang. Study on mixing, ignition and combustion stabilization mechanism of wall-injection fuel jet in supersonic flows. [PhD Thesis]. Changsha: National University of Defense Technology, 2019 (in Chinese))
    [42]
    Yuan YM, Zhang TC, Yao W, et al. Characterization of flame stabilization modes in ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925
    [43]
    蔡遵. 超声速后缘突扩凹腔燃烧室中的点火与火焰稳定过程研究. [博士论文]. 长沙: 国防科技大学, 2018

    Cai Zun. Investigation on the flame ignition and stabilization processes in a cavity-based scramjet combustor with a rear-wall-expansion geometry. [PhD Thesis]. Changsha: National University of Defense Technology, 2018 (in Chinese))
    [44]
    Gamba M, Mungal GM. Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crocssflow. Journal of Fluid Mechanics, 2015, 780: 226-273 doi: 10.1017/jfm.2015.454
    [45]
    Park C. Review of chemical-kinetic problems of future NASA missions. I - Earth entries. Journal of Thermophysics and Heat Transfer, 1996, 7(3): 385-398
    [46]
    Ishihara T, Ogino Y, Kino T, et al. Numerical study on wall pressure over cone region of blunt-nosed body in high enthalpy shock tunnel HIEST. Aerospace Science and Technology, 2016, 50: 256-265 doi: 10.1016/j.ast.2015.12.015
    [47]
    Rogers RC, Weidner EH. Scramjet fuel-air mixing establishment in a pulse facility. Journal of Propulsion & Power, 1993, 9(1): 127-133
  • Related Articles

    [1]Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297
    [2]Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. EXPERIMENTAL INVESTIGATION ON THE REGIMES OF HYDROCARBON SUPERSONIC COMBUSTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547. DOI: 10.6052/0459-1879-21-686
    [3]He Can, Xing Jianwen, Ouyang Hao, Deng Weixin, Xiao Baoguo. FLOW FIELD AND COMBUSTION CHARACTERISTICS ANALYSIS OF SRAMJET UNDER Ma12 FLIGHT CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 622-632. DOI: 10.6052/0459-1879-21-496
    [4]Shi Wen, Tian Ye, Guo Mingming, Liu Yuan, Zhang Chenlin, Zhong Fuyu, Le Jialing. INVESTIGATION OF FLOW CHARACTERISTICS AND FLAME STABILIZATION IN AN ETHYLENE-FUELED SCRAMJET COMBUSTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 612-621. DOI: 10.6052/0459-1879-21-353
    [5]Liang Jinhu, Hu Honghao, Wang Su, Zhang Shengtao, Fan Bingcheng, Cui Jiping. SHOCK TUBE STUDY OF ETHYLENE IGNITION DELAY CHARACTERISTICS AT LOW DILUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 155-159. DOI: 10.6052/0459-1879-13-027
    [6]Yingwen Yan, Jianxing Zhao, Jingyong Zhang, Yong Liu. Sub-grid scale combustion models for two-phase combustion flow in an annular combustor[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 776-784. DOI: 10.6052/0459-1879-2006-6-2005-040
    [7]Jinliang Xu, . Experimental investigation of microscale premixed combustion of hydrogen[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 316-322. DOI: 10.6052/0459-1879-2006-3-2005-184
    [8]OXV-HYDROGEN COMBUSTION AND DETONATION DRIVEN SHOCK TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 389-397. DOI: 10.6052/0459-1879-1999-4-1995-046
    [9]THE STRUCTURE OF COMBUSTION DUST CLOUD WITHIN BOUNDARY LAYER INDUCED BY SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(6): 653-662. DOI: 10.6052/0459-1879-1995-6-1995-481
    [10]MODELING OF BITUMINOUS COAL AND LEAN COAL COMBUSTION IN A COMBUSTOR OF CO-FLOWING JETS WITH LARGE VELOCITY DIFFERENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 276-284. DOI: 10.6052/0459-1879-1990-3-1995-945
  • Cited by

    Periodical cited type(33)

    1. 陈渊钊,朱健成,吴文军,杜晓康,章定国. 浮动坐标系下大变形柔性梁的变形梯度单元. 力学学报. 2025(01): 249-260 . 本站查看
    2. 冯涛,张庆君,林坤阳,王立朋,张桥,杨军刚,肖勇. 星载大口径环形天线的系统设计. 中国空间科学技术(中英文). 2025(01): 24-33 .
    3. 胡海岩,田强,文浩,罗凯,马小飞. 极大空间结构在轨组装的动力学与控制. 力学进展. 2025(01): 1-29 .
    4. 翁剑成,陈虹微,杨元慧,臧克江,刘亚丹,林俊. 机械臂K因子影响因数的研究和扩展寿命计算. 龙岩学院学报. 2024(02): 29-36 .
    5. 吴志刚,蒋建平,邬树楠,李庆军,王兴,谭述君,邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展. 2024(02): 344-390 .
    6. 肖正明,康振辉,伍星,刘韬,王建. 空间并联机器人动力学分析与驱动参数匹配. 昆明理工大学学报(自然科学版). 2024(03): 127-136 .
    7. 李浦,逯代兴. 协同仿真算法研究综述. 机械工程学报. 2024(19): 172-186 .
    8. 王兴东,柯蕃,孔建益,吴宗武. 低耗稳定的四间隙平面连杆多目标优化设计. 组合机床与自动化加工技术. 2024(12): 30-34+40 .
    9. 张硕,杨洋,李媛媛,葛玉梅,杨翊仁. 多体柔性机械臂的非线性能量阱被动控制研究. 四川轻化工大学学报(自然科学版). 2023(01): 33-40 .
    10. 龚浩然,王博,李庆军,吴志刚,邓子辰. 太阳光压与地球阴影作用下的空间柔性梁结构振动分析与控制. 振动工程学报. 2023(04): 988-995 .
    11. 刘凉,汪博深,冯建峰,赵新华. 含柔性动平台并联机器人动力学建模方法研究. 农业机械学报. 2023(12): 417-430 .
    12. 张智豪,于潇雁. 存在关节死区的空间机器人无扰快速终端滑模控制. 力学学报. 2022(03): 777-785 . 本站查看
    13. 竺伟梁,庞兆君,司骥跃,杜忠华,程春. 脉冲展开式飞网质量分布与展开稳定性优化. 宇航学报. 2022(09): 1208-1218 .
    14. 王庚祥,马道林,刘洋,刘才山. 多体系统碰撞动力学中接触力模型的研究进展. 力学学报. 2022(12): 3239-3266 . 本站查看
    15. 满万鑫,李新洪,周思引,王训,张治彬. 空间目标在轨捕获方法及关键技术综述. 空天技术. 2022(06): 77-96 .
    16. 薛纭,陈立群. Kirchhoff动力学比拟对弹性薄壳的推广. 力学学报. 2021(01): 234-247 . 本站查看
    17. 汤惠颖,张志娟,刘铖,刘绍奎. 两类基于局部标架梁单元的闭锁缓解方法. 力学学报. 2021(02): 482-495 . 本站查看
    18. 张大羽,罗建军,王辉,马小飞. ANCF/CRBF平面梁闭锁问题及闭锁缓解研究. 力学学报. 2021(03): 874-889 . 本站查看
    19. 祝世兴,杨丽昆,魏戬,祝恒佳. 基于改进Bingham模型的磁流变阻尼器力学建模及试验研究. 重庆理工大学学报(自然科学). 2021(04): 254-264 .
    20. 高山,史东华,郭永新. Hamel框架下几何精确梁的离散动量守恒律. 力学学报. 2021(06): 1712-1719 . 本站查看
    21. 李韶华,冯桂珍,丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报. 2021(09): 2554-2568 . 本站查看
    22. 张国斌,张青斌,丰志伟,陈青全,杨涛. 软式空中加油对接约束力不确定性分析. 航空学报. 2021(09): 303-317 .
    23. 罗操群,孙加亮,文浩,胡海岩,金栋平. 多刚体系统分离策略及释放动力学研究. 力学学报. 2020(02): 503-513 . 本站查看
    24. 宋新宇,戈新生. 挠性航天器动力学模型的非约束模态分析. 力学学报. 2020(04): 954-964 . 本站查看
    25. 王震,祝恒佳,陈晓宇,张云清. 基于交叉型双气室空气互联悬架的全地形车侧倾特性研究. 力学学报. 2020(04): 996-1006 . 本站查看
    26. 姚文莉,刘彦平,杨流松. 基于高斯原理的非理想系统动力学建模. 力学学报. 2020(04): 945-953 . 本站查看
    27. 艾海平,陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报. 2020(04): 975-984 . 本站查看
    28. 李海波,刘世兴,宋海燕,梁立孚. 非保守非线性刚-弹-液-控耦合分析动力学及其应用研究. 力学学报. 2020(04): 932-944 . 本站查看
    29. 王立安,赵建昌,王作伟. 汽车行驶诱发地表振动的解析研究. 力学学报. 2020(05): 1509-1518 . 本站查看
    30. 李海泉,梁建勋,吴爽,刘茜,张文明. 空间机械臂柔性捕获机构建模与实验研究. 力学学报. 2020(05): 1465-1474 . 本站查看
    31. 沈涛,张崇峰,王卫军,冯文博,邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究. 力学学报. 2020(06): 1590-1598 . 本站查看
    32. 司震,钱霙婧,杨晓东,张伟. 基于参激共振的受摄小行星悬停轨道设计方法. 力学学报. 2020(06): 1774-1788 . 本站查看
    33. 郭祥,靳艳飞,田强. 随机空间柔性多体系统动力学分析. 力学学报. 2020(06): 1730-1742 . 本站查看

    Other cited types(51)

Catalog

    Article Metrics

    Article views (619) PDF downloads (120) Cited by(84)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return