EI、Scopus 收录
中文核心期刊
Volume 54 Issue 6
May  2022
Turn off MathJax
Article Contents
Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. Experimental investigation on the regimes of hydrocarbon supersonic combustion. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686
Citation: Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. Experimental investigation on the regimes of hydrocarbon supersonic combustion. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547 doi: 10.6052/0459-1879-21-686

EXPERIMENTAL INVESTIGATION ON THE REGIMES OF HYDROCARBON SUPERSONIC COMBUSTION

doi: 10.6052/0459-1879-21-686
  • Received Date: 2021-12-27
  • Accepted Date: 2022-04-17
  • Available Online: 2022-04-17
  • Publish Date: 2022-06-18
  • Numerical simulations of high-fidelity aerospace engines are usually based on the rapid chemical reaction flame surface assumption, that is, the characteristic scale of supersonic combustion reaction is smaller than the turbulent Kolmogorov scale. This model method has good simulation results for hydrogen fuel, but further research is needed for hydrocarbon fuels such as ethylene. Limited by the extreme environment special nonintrusive measurement techniques, experimental investigations on the discrimination of supersonic combustion flame mode have not been presented in literature. The applicability of the supersonic combustion flame surface model and understandings of the regimes of supersonic combustion restricts the development of high fidelity numerical simulation methods. Based on the in house designed MHz endoscope optical fiber sensor, experiments are designed to study the regimes of supersonic combustion of a dual-mode scramjet combustor. The minimum Shannon entropy of the chemiluminescence signal is used to define the characteristic time of supersonic combustion. The flow characteristic time of supersonic combustion is estimated according to the theoretical method and the incoming flow conditions. Combined with the partition combustion theory, the partition situation of hydrocarbon fuel combustion in a dual-mode scramjet is analyzed. Through combustion zoning and comparison with Taylor scale .The data presented in this paper suggests the supersonic combustion in the vortex framelet regime in a typical flight envelope (Re$\cong $50000; Da∈1.80-2.60, B zone), suggesting the strong influence of turbulence,With different sizes relative to the Taylor scale, vortex structures corresponding to different scales dominate the process. In addition, parametric evaluation on the influence of equivalence ratio, flux ratio and Mach number during a simulated acceleration is presented in this paper. The experiment found that the combustion gradually increased with the increase of the equivalence ratio within a certain range, and the enhancement effect was obviously stronger than that of the flux ratio; the change of the flux ratio would cause the combustion to bifurcate; the change of the incoming Mach number was important for The effect of combustion is more obvious, and it also shows that the effect mechanism of incoming flow is an important direction for future research on turbulent combustion theory.

     

  • loading
  • [1]
    Lin F, Karp M, Bose ST, et al. Shock-induced heating and transition to turbulence in a hypersonic boundary layer. Journal of Fluid Mechanics, 2020, 909(8): 1-49
    [2]
    Li N, Chang J, Xu K, et al. Instability of shock train behaviour with incident shocks. Journal of Fluid Mechanics, 2020, 907(40): 1-27
    [3]
    Micka D, Driscoll J. Dual-mode combustion of a jet in cross-flow with cavity flameholder//46th AIAA Aerospace Sciences Meeting and Exhibit, 2008
    [4]
    Fotia ML, Driscoll JF. Isolator-combustor interactions in a direct-connect ramjet-scramjet experiment. Journal of Propulsion & Power, 2012, 28(1): 83-95
    [5]
    Yuan Y, Zhang T, Yao W, et al. Characterization of flame stabilization modes in an ethylene fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2016, 18(6): 1-7
    [6]
    Zhang C, Chang J, Zhang Y, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor. Acta Astronautica, 2017, 137(8): 44-51
    [7]
    Segal C. Flameholding Analyses in Supersonic Flow//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003
    [8]
    Wang H, Wang Z, Sun M, et al. Combustion modes of hydrogen jet combustion in a cavitybased supersonic combustor. International Journal of Hydrogen Energy, 2013, 38(27): 12078-12089 doi: 10.1016/j.ijhydene.2013.06.132
    [9]
    Huang W, Du ZB, Yan L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey. Progress in Aerospace Sciences, 2018, 101(8): 13-30
    [10]
    Micka DJ, Driscoll JF. Combustion characteristics of a dual-mode scramjet combustor withcavity flameholder. Proceedings of the Combustion Institute, 2009, 32(2): 2397-2404 doi: 10.1016/j.proci.2008.06.192
    [11]
    Gonzalezjueze D, Kerstein AR. Advances and challenges in modeling higher-speed turbulent combustion in propulsion systems. Progress in Energy and Combustion Science, 2017, 60: 26-67
    [12]
    杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型. 航空学报, 2015, 36(1): 261-273 (Yang Yue, You Jiaping, Sun Mingbo. Modelling of turbulence-chemistry interaction in numerical simulations of supersonic combustion. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273 (in Chinese)

    Yang Yue, You Jiaping, Sun Mingbo. Modelling of turbulence-chemistry interaction in numerical simulations of supersonic combustion. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 261-273(in Chinese))
    [13]
    Ladeinde F. A critical review of scramjet combustion simulation//Advanced CFD Techniques for SCRAMJET Simulation, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009
    [14]
    Pitsch H. Large-eddy simulation of turbulent combustion. Annual Review of Fluid Mechanics, 2006, 38(38): 453-482
    [15]
    Veynante D, Vervisch L. Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28(28): 193-266
    [16]
    Chen C, Donzis D. Shock–turbulence interactions at high turbulence intensities. Journal of Fluid Mechanics, 2019, 870(2): 813-847
    [17]
    张会强, 陈兴隆, 周力行等. 湍流燃烧数值模拟研究的综述. 力学进展, 1999, 29(4): 567-575 (Zhang Huiqiang, Chen Xinglong, Zhou Lixing, et al. A review on numerical modeling of turbulent combustion. Advances in Mechanics, 1999, 29(4): 567-575 (in Chinese) doi: 10.3321/j.issn:1000-0992.1999.04.013

    Zhang Huiqiang, Chen Xinglong, Zhou Lixing, et al. A review on numerical modeling of turbulent combustion. Advances in Mechanics, 1999, 29( 4): 567-575(in Chinese)) doi: 10.3321/j.issn:1000-0992.1999.04.013
    [18]
    Borghi R. On the Structure and Morphology of Turbulent Premixed Flames. New York : Springer, 1985: 117-138
    [19]
    Ingenito A, Bruno C. Physics and regimes of supersonic combustion. American Institute of Aeronautics and Astronautics, 2010, 48(3): 515-525 doi: 10.2514/1.43652
    [20]
    Pope SB. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 1985, 11(2): 119-192 doi: 10.1016/0360-1285(85)90002-4
    [21]
    Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319-339 doi: 10.1016/0360-1285(84)90114-X
    [22]
    Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model. Proceedings of the Combustion Institute, 2007, 31(2): 2497-2504 doi: 10.1016/j.proci.2006.07.074
    [23]
    Klimenko AY, Bilger RW. Conditional moment closure or turbulent combustion. Progress in Energy and Combustion Science, 19, 25(6): 595-687
    [24]
    Kim SH, Pitsch H. Conditional filtering method for large-eddy simulation of turbulent non-premixed combustion. Physics of Fluids, 2005, 17(10): 65-113
    [25]
    Kerstein AR. Lineareddy modeling of turbulent transport. Part 7: Finite-rate chemistry and multi-stream mixing. Journal of Fluid Mechanics, 1992, 240(5): 289-313
    [26]
    孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面分区研究综述. 力学进展, 2010, 40(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Review on flame surface models of partial premixed supersonic combustion. Advances in Mechanics, 2010, 40(6): 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127

    Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Review on flame surface models of partial premixed supersonic combustion. Advances in Mechanics, 2010, 40(6): 634-641(in Chinese)) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127
    [27]
    Yoo CS, Richardson ES, Chen JH, et al. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proceedings of the Combustion Institute, 2011, 33(1): 1619-1627 doi: 10.1016/j.proci.2010.06.147
    [28]
    Yao W, Liu H. Performance analysis of a strut-aided hypersonic scramjet by full-scale IDDES modeling. Aerospace Science and Technology, 2021, 117: 106941
    [29]
    Robin V, Mura A, Champion M. Direct and indirect thermal expansion effects in turbulent premixed flames. Journal of Fluid Mechanics, 2011, 689(6): 149-182
    [30]
    Kha KQN, Robin V, Mura A, et al. Implications of laminar flame finite thickness on the structure of turbulent premixed flames. Journal of Fluid Mechanics, 2016, 787(7): 116-147
    [31]
    李晓鹏, 齐力, 范学军等. 超声速燃烧中的特征尺度及影响因素. 航空动力学报, 2013, 28(7): 1458-1466 (Li Xiaopeng, Qi Li, Fan Xuejun, et al. Characteristic scales and influential factors in supersonic combustion. Journal of Aerospace Power, 2013, 28(7): 1458-1466 (in Chinese)

    Li Xiaopeng, Qi Li, Fan Xuejun, et al. Characteristic scales and influential factors in supersonic combustion. Journal of Aerospace Power, 2013, 28(7): 1458-1466 (in Chinese))
    [32]
    Sutherland W. The viscosity of gases and molecular force. Philosophical Magazine, 2009, 365(36): 507-531
    [33]
    孟宇. 超燃冲压发动机加速过程及等离子体对超声速火焰结构的影响. [博士论文]. 北京: 中国科学院大学, 2019

    Meng Yu. Effect of acceleration and plasma on supersonic combustion structure of scramjet. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2019 (in Chinese))
    [34]
    李忠朋. 基于被动内窥火焰传感器技术的超声速燃烧感知实验研究. [硕士论文]. 北京: 中国科学院大学, 2021

    Li Zhongpeng. Supersonic combustion sensing by the passive endoscopic flame sensor. [Master Thesis]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese))
    [35]
    Mondal S. Effects of inlet conditions on dynamics of a thermal pulse combustor. Combustion Theory and Modelling, 2011, 16(1): 59-74
    [36]
    Gotoda H. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. International Journal of Heat and Mass Transfer, 2009, 52(23): 5423-5432
    [37]
    Kabiraj L, Saurabh A. Route to chaos for combustion instability in ducted laminar premixed flames. American Institute of Physics, 2012, 22(2): 713-716
    [38]
    Kabiraj L, Sujith RI. Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. Journal of Fluid Mechanics, 2012, 713(10): 376-397
    [39]
    Noble AC, King GB. Nonlinear thermoacoustic instability dynamics in a Rijke Tube. Combustion Science and Technology, 2012, 184(3): 293-322 doi: 10.1080/00102202.2011.635614
    [40]
    Vervisch VL, Veynante D. Turbulent combustion modeling. Progress in Energy and Combustion Science, 2002, 28(8): 193-266
    [41]
    Li L, Song DR. Parameter estimation based on fractional power spectrum under alpha-stable distribution noise environment in wideband bistatic MIMO radar system. International Journal of Electronics and Communications, 2013, 67(11): 947-954 doi: 10.1016/j.aeue.2013.05.006
    [42]
    Gotodaa H, Ikawa T. Short-term prediction of dynamical behavior of flame front instability induced by radiative heat loss. American Institute of Physics, 2012, 22(3): 1-8
    [43]
    Gotoda H, Ueda T. Transition from periodic to non-periodic motion of a bunsen-type premixed flame tip with burner rotation. Proceedings of the Combustion Institute, 2002, 29(2): 1503-1509 doi: 10.1016/S1540-7489(02)80184-5
    [44]
    Gotoda H, Asano Y. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. International Journal of Heat and Mass Transfer, 2009, 21(1): 1-11
    [45]
    Gotoda H, Miyano T, Shepherd IG. Dynamic properties of unstable motion of swirling premixed flames generated by a change in gravitational orientation. Physical Review E, 2010, 81(2): 1-10
    [46]
    Lian H, Martz J, Prakash N, et al. Fast computation of combustion phasing and its influence on classifying random or deterministic patterns. Journal of Engineering for Gas Turbines and Power, 2016, 138: 1-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(32)  / Tables(1)

    Article Metrics

    Article views (425) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return