工程中大量材料的形变介于弹性与黏性之间, 既具有弹性固体特性, 又具有黏性流体特点, 即为黏弹性. 黏弹性使得材料出现很多力学松弛现象, 如应变松弛、滞后损耗等行为. 在研究受热载荷作用的多场耦合问题的瞬态响应时, 考虑此类问题中的热松弛和应变松弛现象, 对准确描述其瞬态响应尤为重要. 针对广义压电热弹问题的瞬态响应, 尽管已有学者建立了考虑热松弛的广义压电热弹模型, 但迄今, 尚未计入应变松弛. 本文中, 考虑到材料变形时的应变松弛, 通过引入应变率, 在Chandrasekharaiah广义压电热弹理论的基础之上, 经拓展, 建立了考虑应变率的广义压电热弹理论. 借助热力学定律, 给出了理论的建立过程并得到了相应的状态方程及控制方程. 在本构方程中, 引入了应变松弛时间与应变率的乘积项, 同时, 分别在本构方程和能量方程中引入了热松弛时间因子. 其后, 该理论被用于研究受移动热源作用的压电热弹一维问题的动态响应问题. 采用拉普拉斯变换及其数值反变换, 对问题进行了求解, 得到了不同应变松弛时间和热源移动速度下的瞬态响应, 即无量纲温度、位移、应力和电势的分布规律, 并重点考察了应变率对各物理量的影响效应, 将结果以图形形式进行了表示. 结果表明: 应变率对温度、位移、应力和电势的分布规律有显著影响.
2020, 52(5): 1267-1276.
doi: 10.6052/0459-1879-20-120