EI、Scopus 收录
中文核心期刊

超弹性材料本构关系的最新研究进展

彭向峰, 李录贤

彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展[J]. 力学学报, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189
引用本文: 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展[J]. 力学学报, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189
Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189
Citation: Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189
彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展[J]. 力学学报, 2020, 52(5): 1221-1234. CSTR: 32045.14.0459-1879-20-189
引用本文: 彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展[J]. 力学学报, 2020, 52(5): 1221-1234. CSTR: 32045.14.0459-1879-20-189
Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. CSTR: 32045.14.0459-1879-20-189
Citation: Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. CSTR: 32045.14.0459-1879-20-189

超弹性材料本构关系的最新研究进展

基金项目: 1)国家自然科学基金资助项目(11672221)
详细信息
    通讯作者:

    李录贤

  • 中图分类号: TQ330

STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS

  • 摘要: 超弹性材料是工程实际中的常用材料, 具有在外力作用下经历非常大变形、在外力撤去后完全恢复至初始状态的特征. 超弹性材料是典型的非线性弹性材料, 其性能可通过材料的应变能函数予以表征. 近几十年来, 围绕应变能函数形式的构造, 已提出许多超弹性材料本构关系研究的数学模型和物理模型, 但适用于多种变形模式和全变形范围的完全本构关系仍是该领域期待解决的重要问题. 本文从3个不同角度, 对超弹性材料本构关系研究的最新进展进行了总结和分析: (1)不同体积变化模式, 包含不可压与可压两种; (2)多变形模式, 包含单轴拉伸、剪切、等双轴以及复合拉剪等多个种类; (3)全范围变形程度, 包含小变形、中等变形到较大变形范围. 超弹性材料本构关系研究的最新进展表明, 为了全面描述具体材料的实验数据并在实际问题中应用超弹性材料, 需要建立适合于多种变形模式和全变形范围的可压超弹性材料的完全本构关系. 对实际超弹性材料完全本构关系的建立及可压超弹性材料应变能函数的构造, 笔者还提出了相应的实施步骤和研究方法.
    Abstract: Hyperelastic materials are commonly used in practical engineering with the prominent feature that a very large deformation may be produced under a force but the initial state can be completely recovered when the force is removed. Hyperelastic materials are typically nonlinear elastic ones, whose behaviors are in general characterized by their strain energy functions. For several decades, a lot of mathematical models and physical models have been proposed to study their constitutive relations through constructing the form of energy functions. However, a complete constitutive relation suitable for varied deformation modes and the entire deformation range is still the significant issue to expect in this field. This paper summarizes and analyzes the latest research status of constitutive relations of hyperelastic materials from three perspectives: (1) volume change modes including incompressible and compressible ones; (2) deformation modes such as uniaxial tension, shearing, biaxial tension and combined stretch and shear; (3) the entire range of deformation including small deformation, moderate deformation and large deformation. The latest progresses indicate that, in order to comprehensively describe experimental data of a given hyperelastic material and to apply it in practical problems, it is necessary to establish a complete constitutive relationship of compressible hyperelastic materials, which is suitable for varied deformation modes and the entire range of deformation. The authors suggest an implementation procedure for establishing the complete constitutive relationship of an actual hyperelastic material and an approach to construct the strain energy function of a compressible material.
  • [1] Chaves EWV. Notes on continuum mechanics (First edition). Netherlands: Springer Netherlands, 2013
    [2] 郭辉, 胡文军, 陶俊林. 泡沫橡胶材料的超弹性本构模型. 计算力学学报, 2013,4:575-579
    [2] ( Guo Hui, Hu Wenjun, Tao Junlin. The superelasticty constitutive model for foam rubber materials. Chinese Journal of Computational Mechanics, 2013,4:575-579 (in Chinese))
    [3] 谈炳东, 许进升, 贾云飞 等. 短纤维增强EPDM包覆薄膜超弹性本构模型. 力学学报, 2017,49(2):317-323
    [3] ( Tan Bingdong, Xu Jinsheng, Jia Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):317-323 (in Chinese))
    [4] 谈炳东, 许进升, 孙朝翔 等. 短纤维增强三元乙丙橡胶横观各向同性黏-超弹性本构模型. 力学学报, 2017,49(3):677-684
    [4] ( Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):677-684 (in Chinese))
    [5] Boyce MC, Arruda EM. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 2000,73(3):504-523
    [6] Puglisi G, Saccomandi G. Multi-scale modelling of rubber-like materials and soft tissues: An appraisal. Proceedings of the Royal Society A, 2016,472(2187):20160060
    [7] Destrade M, Saccomandi G, Sgura I. Methodical fitting for mathematical models of rubber-like materials. Proceedings of the Royal Society A, 2017,473(2198):20160811
    [8] Wilber JP, Criscione JC. The Baker-Ericksen inequalities for hyperelastic models using a novel set of invariants of Hencky strain. International Journal of Solids and Structures, 2005,42(5-6):1547-1559
    [9] Kshitiz U, Ghatu S, Douglas S. Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. Journal of the Mechanics and Physics of Solids, 2019,124:115-142
    [10] Truesdell C, Toupin R. Static grounds for inequalities in finite strain of elastic materials. Archive for Rational Mechanics and Analysis, 1963,12(1):1-33
    [11] Safar A, Mihai LA. The nonlinear elasticity of hyperelastic models for stretch-dominated cellular structures. International Journal of Non-Linear Mechanics, 2018,106:144-154
    [12] Johnson AR, Quigley CJ, Mead J L. Large strain viscoelastic constitutive models for rubber. Part I: Formulations. Rubber Chemistry and Technology, 1994,67(5):904-917
    [13] Mihai LA, Goriely A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proceedings of the Royal Society A, 2017,473(2207):20170607
    [14] Ball JM, James RD. The scientific life and influence of Clifford Ambrose Truesdell III. Archive for Rational Mechanics and Analysis, 2002,161(1):1-26
    [15] Rivlin RS. Large elastic deformation of isotropic materials: I. Fundamental concepts, II. Some uniqueness theories for pure homogeneous deformations. Philosophical Transactions of the Royal Society of London A, 1948,240:459-508
    [16] Ogden RW. Non-linear Elastic Deformations (reprint of Ellis Horwood, Chichester, 1984). Mineola, NY: Dover, 1997
    [17] Pence TJ, Gou K. On compressible versions of the incompressible neo-Hookean material. Mathematics and Mechanics of Solids, 2014,20(2):157-182
    [18] 匡震邦. 非线性连续介质力学基础. 西安: 西安交通大学出版社, 1989
    [18] ( Kuang Zhenbang. Non-linear Continuum Mechanics. Xi'an: Xi'an Jiaotong University Press, 1989 (in Chinese))
    [19] Truesdell C, Noll W. The non-linear Field Theories of Mechanics (3rd edn). New York: Springer, 2004
    [20] Fortes MA, Nogueira MT. The Poisson effect in cork. Mater. Sci. Eng. A, 1989,122(2):227-232
    [21] Dinwoodie JM. Timber, Its Nature and Behavior. New York: Van Nostrand Reinhold, 1981
    [22] Sanborn B, Song B. Poisson's ratio of a hyperelastic foam under quasi-static and dynamic loading. International Journal of Impact Engineering, 2019,123:48-55
    [23] Beda T. An approach for hyperelastic model-building and parameters estimation: A review of constitutive models. European Polymer Journal, 2014,50:97-108
    [24] Rivlin RS, Saunders DW. Large elastic deformation of isotropic materials--VII: Experiments of the deformation of rubber. Philosophical Transactions of the Royal Society of London $A$, 1951,243:251-288
    [25] Treloar LRG. The Physics of Rubber Elasticity. Oxford: Clarendon Press, 2005
    [26] Carroll MM. A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011,103(2):173-187
    [27] Seibert DJ, Sch?che N. Direct comparison of some recent rubber elasticity models. Rubber Chemistry and Technology, 2000,73(2):366-384
    [28] 李晓芳, 杨晓翔. 橡胶材料的超弹性本构模型. 弹性体, 2005,1:52-60
    [28] ( Li Xiaofang, Yang Xiaoxiang. Hyperelastic constitutive models of rubber materials. China Elastomerics, 2005,1:52-60 (in Chinese))
    [29] James HM, Guth E. Theory of the elastic properties of rubber. Journal of Chemical Physics, 1943,11(10):455-481
    [30] Flory PJ. Network structure and the elastic properties of vulcanized rubber. Chemical Reviews, 1944,35(1):51-75
    [31] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412
    [32] Treloar LRG, Riding G. A non-Gaussian theory for rubber in biaxial strain. I. Mechanical Properties. Proceedings of the Royal Society A$:$ Mathematical, Physical and Engineering Sciences, 1979,369(1737):261-280
    [33] Wu PD, Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 1993,41(3):427-456
    [34] Budday S, Sommer G, Birkl C. Mechanical characterization of human brain tissue. Acta Biomaterilia, 2017,48:319-340
    [35] Hartmann S. Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. International Journal of Solids and Structures, 2001,38(44-45):7999-8018
    [36] Mooney M. A theory of large elastic deformation. Journal of Applied Physics, 1940,11(9):582-592
    [37] Rivlin RS. "Large Elastic Deformations" in " Rheology: Theory and Applications, Vol. 1". Eirich FR Ed, New York: Academic Press, 1956
    [38] 张希润, 蔡力勋, 陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法. 力学学报, 2020,52(3):787-796
    [38] ( Zhang Xirun, Cai Lixun, Chen Hui. Hyperelastic indentation models and the dual-indentation method based on energy density equivalence. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):787-796 (in Chinese))
    [39] Yeoh OH. Characterization of elastic properties of carbon black filled rubber vulcanizates. Rubber Chemistry and Technology, 1990,63(5):792-805
    [40] Gent AN, Thomas AG. Forms for the stored (strain) energy function for vulcanized rubber. Journal of Polymer Science, 1958,28(118):625-628
    [41] Liu T, Shen M, Huang L, et al. Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. Journal of the Mechanical Behavior of Biomedical Materials, 2019: 103575, doi: 10.1016/j.jmbbm.2019.103575
    [42] Valanis KC, Landel RF. The strain-energy function of a hyperelastic material in terms of the extension ratios. Journal of Applied Physics, 1967,38(7):2997-3002
    [43] Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996,69(1):59-61
    [44] Pucci E, Saccomandi G. A note on the Gent model for rubber-like materials. Rubber Chemistry and Technology, 2002,75(5):839-851
    [45] Ehlers W, Eipper G. The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mechanica, 1998,130(1-2):17-27
    [46] Horgan CO, Murphy JG. Constitutive modeling for moderate deformations of slightly compressible rubber. Journal of Rheology, 2009,53(1):153-168
    [47] Flory PJ. Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 1961,57(5):829
    [48] Kumar N, Rao VV. Hyperelastic Mooney-Rivlin model: Determination and physical interpretation of material constants. MIT International Journal of Mechanical Engineering, 2016,6(1):43-46
    [49] Blatz PJ, Ko WL. Application of finite elastic theory to deformation of rubbery materials. Transactions of the Society of Rheology, 1962,6(1):223-251
    [50] Karoui A, Trifa M, Arfaoui M, Renard Y. A plane strain analysis of the elastostatic fields near the notch-tip of a Blatz-Ko material. Theoretical and Applied Fracture Mechanics, 2019,103:102309
    [51] Hartmann S, Neff P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. International Journal of Solids and Structures, 2003,40(11):2767-2791
    [52] Penn RW. Volume changes accompanying the extension of rubber. Transactions of the Society of Rheology, 1970,14(4):509-517
    [53] Fong JT, Penn RW. Construction of a strain-energy function for an isotropic elastic material. Transactions of the Society of Rheology, 1975,19(1):99-113
    [54] Adams LH, Gibson RE. The compressibility of rubber. Rubber Chemistry and Technology, 1930,3(4):555-562
    [55] Bridgman PW. The compression of sixty-one solid substances to 25000 kg$\cdot$cm$^{-2}$, determined by a new rapid method. Proceedings of the American Academy of Arts and Sciences, 1944,76:9-24
    [56] Ogden RW. Volume changes associated with the deformation of rubber-like solids. Journal of the Mechanics and Physics of Solids, 1976,24(6):323-338
    [57] Hassani R, Ansari R, Rouhi H. Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: A numerical variational method. International Journal of Non-Linear Mechanics, 2019,116:39-54
    [58] Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 2012,13(5):759-764
    [59] Dobrynin AV, Carrillo J-MY. Universality in nonlinear elasticity of biological and polymeric networks and gels. Macromolecules, 2011,44(1):140-146
    [60] Hart-Smith LJ. Elasticity parameters for finite deformations of rubber-like materials. Zeitschrift Für Angewandte Mathematik Und Physik Zamp(ZAMP), 1966,17(5):608-626
    [61] Nunes LCS, Moreira DC. Simple shear under large deformation: Experimental and theoretical analyses. European Journal of Mechanics A/ Solids, 2013,42:315-322
    [62] Mihai LA, Chin L, Janmey PA, Goriely A. A comparison of hyperelastic constitutive models applicable to brain and fat tissues. Journal of the Royal Society Interface, 2015,12(110):20150486
    [63] McKenna GB. Deformation and flow of matter: interrogating the physics of materials using rheological methods. Journal of Rheology, 2012,56(1):113-158
    [64] Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. Journal of Physics D$:$ Applied Physics, 1975,8(11):1285-1304
    [65] Carroll MM. Molecular chain networks and strain energy functions in rubber elasticity. Philosophical Transactions of the Royal Society A, 2019,377(2144):20180067
  • 期刊类型引用(28)

    1. 范振宇,袁英才,李艳,乔俊伟,王鑫,樊添豪. 柔性版超弹性现象对线条微观变形影响研究. 印刷与数字媒体技术研究. 2024(01): 77-82 . 百度学术
    2. 周成龙,宋政昌,曾群锋,孙兴汉. 潜水清淤机器人滚动膜片式压差补偿器设计. 人民长江. 2024(S1): 129-133 . 百度学术
    3. 陈蒙,陈丰,张华,丁文芹,占才学. 椭球型果蔬柔性采摘灵巧手设计. 中国农机化学报. 2024(08): 32-37 . 百度学术
    4. 白晓伟,赵鲁阳,李亮,罗利龙,阳杰,胡衡. 两类数据驱动计算均匀化方法对比研究. 力学学报. 2024(07): 1931-1942 . 本站查看
    5. 汪振宁,李光宇,施允洋. 基于神经网络的闸门水封止水性能预测模型研究. 江淮水利科技. 2024(04): 11-15+33+57 . 百度学术
    6. 汪振宁,王珏,李光宇,施允洋. 基于有限元法的山型水封封头形状研究. 水利与建筑工程学报. 2024(04): 72-78+119 . 百度学术
    7. 赖晨翔,张衡,杜浩明,蔡仁烨. 基于超弹性本构模型的橡胶减振垫仿真分析. 科技创新与应用. 2024(34): 26-29 . 百度学术
    8. 李欢欢,曹健,李松晶. 微流控视觉伪装系统实验设计及流动特性分析. 实验室研究与探索. 2024(11): 1-5 . 百度学术
    9. 聂帅,王齐,杜西平. 基于改进Zener模型的聚氨酯材料本构模型研究. 南方农机. 2024(S1): 177-179 . 百度学术
    10. 王梦帆,张立新. 软管泵漏失现象分析. 化工学报. 2024(S1): 170-182 . 百度学术
    11. 龚臣成 ,陈艳 ,戴兰宏 . 聚脲弹性体力学性能与本构关系研究进展. 力学学报. 2023(01): 1-23 . 本站查看
    12. 丁军,索双富,李娟娟,刘琛,徐长杰. 基于Isight平台的橡胶材料超弹模型参数优化. 弹性体. 2023(02): 25-30 . 百度学术
    13. 付敏,王成梦,郝镒林,高泽飞,陈效庆. 变结构气动软体机械手的设计及试验研究. 机床与液压. 2023(13): 7-13+26 . 百度学术
    14. 张鹏,沈伟,钟琳,曹云祥,曾雄伟,褚玮,冯茂硕,齐佳伟. 醋酸纤维包装缓冲力学性能仿真与试验研究. 包装工程. 2023(15): 236-243 . 百度学术
    15. 王清峰,史书翰,辛德忠,陈航,张世涛. 煤矿井下瓦斯抽采钻孔三段式自动封孔器研究. 煤田地质与勘探. 2023(09): 147-155 . 百度学术
    16. 尹耀得,赵德敏,刘建林,许增耀,侯伟. 丙烯酸弹性体的率相关分数阶黏弹性模型研究. 力学学报. 2022(01): 154-162 . 本站查看
    17. 胡坚柯,陈吉丰,汪振宁,胡葆文,王珏,郝楠楠,蔡锟,胡梦溪. 基于Mooney-Rivlin模型的高水头伸缩式水封非线性仿真. 中国农村水利水电. 2022(04): 215-220+228 . 百度学术
    18. 丁军,索双富,张琦,孟国营. 基于超弹-黏弹本构模型的橡胶材料有限元分析. 弹性体. 2022(01): 6-9 . 百度学术
    19. 王鹏,罗帅,姜伟民. 汽车尾灯支架装配变形的数值模拟与验证. 精密成形工程. 2022(05): 55-60 . 百度学术
    20. 章子健,刘振海,张洪武,郑勇刚. 近似不可压软材料动力分析的完全拉格朗日物质点法. 力学学报. 2022(12): 3344-3351 . 本站查看
    21. 韩磊,王新彤,李录贤. 基于Treloar实验数据的超弹性材料完全本构关系研究. 力学学报. 2022(12): 3444-3455 . 本站查看
    22. 刘岩,王惠明. 考虑微观变形特征的水凝胶均匀和非均匀溶胀分析及其影响参数研究. 力学学报. 2021(02): 437-447 . 本站查看
    23. 施成,周恒为,丁明明,叶峰,石彤非. 一种基于分子链统计理论的橡胶超弹性混合本构模型. 应用化学. 2021(02): 228-235 . 百度学术
    24. 陈凌峰,于佳佳,李友荣,黄映洲,李谷元. 向列相溶致液晶旋转黏度研究. 力学学报. 2021(04): 998-1007 . 本站查看
    25. 杨育梅,李志鹏. 高温超导带材超导涂层局部脱黏后的电磁力学行为分析. 力学学报. 2021(05): 1345-1354 . 本站查看
    26. 夏春荣. 机器人手臂材料的弯曲极限测试. 兵器材料科学与工程. 2021(04): 120-124 . 百度学术
    27. 管国阳,孟政委,谢立新,彭南陵. 聚氨酯橡胶超弹性本构模型拟合效果评估. 力学季刊. 2021(03): 571-580 . 百度学术
    28. 袁松,邵林,黎良仆,邹鹏. 应对震后崩塌高能级防护钢箱棚洞的选型研究. 钢结构(中英文). 2021(07): 43-49 . 百度学术

    其他类型引用(44)

计量
  • 文章访问数:  2486
  • HTML全文浏览量:  388
  • PDF下载量:  1089
  • 被引次数: 72
出版历程
  • 收稿日期:  2020-06-02
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回