EI、Scopus 收录
中文核心期刊

板中热弹波传播: 一种改进的勒让德多项式方法

王现辉, 李方琳, 刘宇建, 陈会涛, 禹建功

王现辉, 李方琳, 刘宇建, 陈会涛, 禹建功. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. DOI: 10.6052/0459-1879-20-124
引用本文: 王现辉, 李方琳, 刘宇建, 陈会涛, 禹建功. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. DOI: 10.6052/0459-1879-20-124
Wang Xianhui, Li Fanglin, Liu Yujian, Chen Huitao, Yu Jiangong. THERMOELASTIC WAVE PROPAGATION IN PLATES: AN IMPROVED LEGENDRE POLYNOMIAL APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. DOI: 10.6052/0459-1879-20-124
Citation: Wang Xianhui, Li Fanglin, Liu Yujian, Chen Huitao, Yu Jiangong. THERMOELASTIC WAVE PROPAGATION IN PLATES: AN IMPROVED LEGENDRE POLYNOMIAL APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. DOI: 10.6052/0459-1879-20-124
王现辉, 李方琳, 刘宇建, 陈会涛, 禹建功. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. CSTR: 32045.14.0459-1879-20-124
引用本文: 王现辉, 李方琳, 刘宇建, 陈会涛, 禹建功. 板中热弹波传播: 一种改进的勒让德多项式方法[J]. 力学学报, 2020, 52(5): 1277-1285. CSTR: 32045.14.0459-1879-20-124
Wang Xianhui, Li Fanglin, Liu Yujian, Chen Huitao, Yu Jiangong. THERMOELASTIC WAVE PROPAGATION IN PLATES: AN IMPROVED LEGENDRE POLYNOMIAL APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. CSTR: 32045.14.0459-1879-20-124
Citation: Wang Xianhui, Li Fanglin, Liu Yujian, Chen Huitao, Yu Jiangong. THERMOELASTIC WAVE PROPAGATION IN PLATES: AN IMPROVED LEGENDRE POLYNOMIAL APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1277-1285. CSTR: 32045.14.0459-1879-20-124

板中热弹波传播: 一种改进的勒让德多项式方法

基金项目: 1)国家自然科学基金(U1804134);国家自然科学基金(51975189);河南省科技计划(192102210189);河南省科技计划(182102210314);河南省科技计划(182102310793)
详细信息
    通讯作者:

    禹建功

  • 中图分类号: O347.4

THERMOELASTIC WAVE PROPAGATION IN PLATES: AN IMPROVED LEGENDRE POLYNOMIAL APPROACH

  • 摘要: 近年来, 超声导波因其衰减小, 传播距离远和信号覆盖范围广, 成为无损检测领域快速发展的方向之一. 然而, 基于超声导波的高温在线检测和激光超声技术却发展缓慢, 其关键在于热弹耦合波动方程求解难度大、传播与衰减特性研究困难. 作为一种有效的求解方法, 勒让德正交多项式方法已广泛应用于导波传播问题, 但该方法在求解热弹导波传播时存在两个不足, 限制其进一步的发展和应用. 这两个缺陷是: (1)求解过程中大量积分的存在, 致使计算效率低下; (2)仅能处理等热边界条件的热弹导波传播. 针对两项不足之处, 提出一种改进的勒让德正交多项式方法, 以求解分数阶热弹板中的导波传播. 推导求解方法中积分的解析表达式, 以提高计算效率; 引入温度梯度展开式, 发展适合勒让德多项式级数的绝热边界条件处理方法. 与已有文献结果对比表明改进方法的正确性; 与已有方法的计算时间对比说明改进方法的高效性. 最后将改进的方法用于求解分数阶热弹板中的导波传播, 研究分数阶次对频散、衰减曲线和应力、位移、温度分布等的影响.
    Abstract: In recent years, the research of thermoelastic coupled wave has greatly promoted the development of high temperature online detection and laser ultrasonic technology. For its small attenuation, long propagation distance and wide signal coverage, ultrasonic guided wave has become one of the rapid development directions in the field of nondestructive testing. However, the development of guided wave high temperature on-line detection and laser ultrasonic guided wave technology is slow. The key lies in the difficulty in solving the coupled thermoelastic wave equation and the difficulty in studying the propagation and attenuation characteristics. As an effective method, Legendre polynomial approach has been widely used to solve the problem of guided wave propagation since 1999. But there are two shortcomings in this method, which limit its further development and application. Two defects are: (1) Due to the Legendre polynomial and its derivative in integral kernel function, the integrals in the solution process leads to low calculation efficiency; (2) Only the thermoelastic guided wave propagation with isothermal boundary conditions can be treated. In order to solve these two defects, an improved Legendre polynomial method is proposed to solve the fractional thermoelastic guided waves in plates. The analytical integral instead of numerical integration in the available conventional Legendre polynomial approach, which greatly improves the calculation efficiency. A new treatment of the adiabatic boundary condition for the Legendre polynomial is developed by introducing the temperature gradient expansion based on the rectangular window function. Compared with the available data shows the validity of the improved method. Comparison with the CPU time between two approaches indicates the higher efficiency of the presented approach. Finally, the phase velocity dispersion curves, attenuation curves, the stress, displacement and temperature distributions for a plate with different fractional orders are analysed. The fractional order has weak influence on the elastic mode velocity, but it has considerable influence on the elastic mode attenuation.
  • [1] 丁俊才, 吴斌, 何存富. SH0导波在黏接结构中传播时的相位变化. 力学学报, 2017,49(1):202-211
    [1] ( Ding Juncai, Wu Bin, He Cunfu. The phase shift of SH0~guided wave propagating in bonding structure. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):202-211 (in Chinese))
    [2] 张乐乐, 刘响林, 刘金喜. 压电纳米板中SH型导波的传播特性. 力学学报, 2019,51(2):503-511
    [2] ( Zhang Lele, Liu Xianglin, Liu Jinxi. Propagation characteristics of SH guided waves in a piezoelectric nanoplate. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):503-511 (in Chinese))
    [3] 何存富, 郑明方, 吕炎 等. 超声导波检测技术的发展、应用与挑战. 仪器仪表学报, 2016,37(8):1713-1735
    [3] ( He Cunfu, Zheng Mingfang, Lü Yan. Development, applications and challenges in ultrasonic guided waves testing technology. Chinese Journal of Scientific Instrument, 2016,37(8):1713-1735 (in Chinese))
    [4] Lefebvre JE, Zhang V, Gazalet J, et al. Legendre polynomial approach for modeling free-ultrasonic waves in multilayered plates. Journal of Applied Physics, 1999,85(7):3419-3427
    [5] Yu JG, Lefebvre JE, Guo YQ. Free-ultrasonic waves in multilayered piezoelectric plates: An improvement of the Legendre polynomial approach for multilayered structures with very dissimilar materials. Composites Part B$:$ Engineering, 2013,51:260-269
    [6] Elmaimouni L, Lefebvre JE, Zhang V, et al. A polynomial approach to the analysis of guided waves in anisotropic cylinders of infinite length. Wave Motion, 2005,42(2):177-189
    [7] Elmaimouni L, Lefebvre JE, Zhang V, et al. Guided waves in radially graded cylinders: A polynomial approach. NDT & E International, 2005,38(5):344-353
    [8] 张小明, 李智, 禹建功. 正交各向异性圆柱板中周向衰逝导波频散特性. 北京工业大学学报, 2018,44(5):770-776
    [8] ( Zhang Xiaoming, Li Zhi, Yu Jiangong. Dispersion characteristics of circumferential evanescent guided waves in orthotropic cylindrical curved plates. Journal of Beijing University of Technology, 2018,44(5):770-776 (in Chinese))
    [9] Yu JG, Wu B, Chen GQ. Wave characteristics in functionally graded piezoelectric hollow cylinders. Archive of Applied Mechanics, 2009,79(9):807-824
    [10] 张小明, 高安儒, 禹建功 等. 功能梯度圆柱板中的周向衰逝导波. 固体力学学报, 2018,39(5):462-471
    [10] ( Zhang Xiaoming, Gao Anru, Yu Jiangong, et al. Circumferential evanescent guided waves in functionally graded cylindrical curved plates. Chinese Journal of Solid Mechanics, 2018,39(5):462-471 (in Chinese))
    [11] Yu JG, Wu B, He CF. Guided thermoelastic waves in functionally graded plates with two relaxation times. International Journal of Engineering Science, 2010,48(12):1709-1720
    [12] Yu JG, Ding JC, Ma ZJ. On dispersion relations of waves in multilayered magneto-electro-elastic plates. Applied Mathematical Modelling, 2012,36(12):5780-5791
    [13] Zhang B, Yu JG, Zhang XM, et al. Complex guided waves in functionally graded piezoelectric cylindrical structures with sectorial cross-section. Applied Mathematical Modelling, 2018,63:288-302
    [14] Lord HW, Shulman YA. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 1967,15(5):299-309
    [15] Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972,2:1-7
    [16] Green AE, Naghdi PM. On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992,15:253-264
    [17] Heydarpour Y, Aghdam MM. Transient analysis of rotating functionally graded truncated conical shells based on the Lord--Shulman model. Thin-Walled Structures, 2016,104:168-184
    [18] Sarkar N, Lahiri A. The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermoelastic medium under Lord-Shulman theory. Journal of Thermal Stresses, 2013,36(7-9):895-914
    [19] Bagri A, Eslami MR. Generalized coupled thermoelasticity of disks based on the Lord--Shulman model. Journal of Thermal Stresses, 2004,27(8):691-704
    [20] 徐业守, 徐赵东, 葛腾 等. 黏弹性材料等效分数阶微观结构标准线性固体模型. 力学学报, 2017,49(5):1059-1069
    [20] ( Xu Yeshou, Xu Zhaodong, Ge Teng, et al. Equivalent fractional order micro-structure standard linear solid model for viscoelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1059-1069 (in Chinese))
    [21] Youssef HM. Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer, 2010,132(6):1-7
    [22] Ezzat MA. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B, 2010,405(19):4188-4194
    [23] Sherief HH, El-Sayed AMA, El-Latief AMA. Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 2010,47(2):269-275
    [24] Tiwari R, Mukhopadhyay S. On harmonic plane wave propagation under fractional order thermoelasticity: An analysis of fractional order heat conduction equation. Mathematics and Mechanics of Solids, 2017, 10.1177/1081286515612528
    [25] Deswal S, Kalkal KK. Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion, 2014,51(1):100-113
    [26] Kumar R, Gupta V. Wave propagation at the boundary surface of an elastic and thermoelastic diffusion media with fractional order derivative. Applied Mathematical Modelling, 2015,39(5-6):1674-1688
    [27] Kumar R, Gupta V. Plane wave propagation and domain of influence in fractional order thermoelastic materials with three-phase-lag heat transfer. Mechanics of Advanced Materials and Structures, 2016,23(8):896-908
    [28] 许光映, 王晋宝, 薛大文. 短脉冲激光加热分数阶导热及其热应力研究. 力学学报, 2020,52(2):491-502
    [28] ( Xu Guangying, Wang Jinbao, Xue Dawen. Investigations on the thermal behavior and associated thermal stresses of the fractional heat conduction for short pulse laser heating. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):491-502 (in Chinese))
    [29] 张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题. 力学学报, 2018,50(3):508-516
    [29] ( Zhang Pei, He Tianhu. A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):508-516 (in Chinese))
    [30] Al-Qahtani H, Datta S. Thermoelastic waves in an anisotropic infinite plate. Journal of Applied Physics, 2004,96(7):3645-3658
    [31] Gradshteyn IS, Ryzhik IM, Jeffrey A. Table of Integrals, Series, and Products. Pittsburgh: Academic Press, 2007
  • 期刊类型引用(4)

    1. 吕炎,刘寒冬,高杰,程俊,何存富. 含初应力各向异性层合管纵向导波频散特性分析. 强度与环境. 2024(05): 53-62 . 百度学术
    2. 吕炎,林晓磊,高杰,何存富. 基于级数法的热弹各向异性层合板兰姆波频散特性分析. 力学学报. 2023(09): 1939-1949 . 本站查看
    3. 禹建功,王开,任小强,王现辉,张博. 功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性. 应用数学和力学. 2023(11): 1325-1340 . 百度学术
    4. 钱江,刘雯星. 基于数值积分的最佳平方逼近样条函数. 安徽师范大学学报(自然科学版). 2022(02): 107-116+138 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  1788
  • HTML全文浏览量:  470
  • PDF下载量:  148
  • 被引次数: 6
出版历程
  • 收稿日期:  2020-01-16
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回