[1] | 叶天贵, 靳国永, 刘志刚. 多层复合壳体三维振动分析的谱--微分求积混合法. 力学学报, 2018,50(4):847-852 | [1] | ( Ye Tiangui, Jin Guoyong, Liu Zhigang. A spectral-differential quadrature method for 3-d vibration analysis of multilayered shells. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):847-852 (in Chinese)) | [2] | 仲政, 吴林志, 陈伟球. 功能梯度材料与结构的若干力学问题研究进展. 力学进展, 2010,40(5):528-541 | [2] | ( Zhong Zheng, Wu Linzhi, Chen Weiqiu. Progress in the study of mechanics problems of functionally graded materials and structures. Advances in Mechanics, 2010,40(5):528-541 (in Chinese)) | [3] | 柯燎亮, 汪越胜. 功能梯度材料接触力学若干基本问题的研究进展. 科学通报, 2015,60(17):1565-1573 | [3] | ( Ke Liaoliang, Wang Yuesheng. Progress in some basic problems on contact mechanics of functionally graded materials. Chin Sci Bull, 2015,60:1565-1573 (in Chinese)) | [4] | 郑保敬, 梁钰, 高效伟 等. 功能梯度材料动力学问题的POD模型降阶分析. 力学学报, 2018,50(4):787-797 | [4] | ( Zheng Baojing, Liang Yu, Gao Xiaowei, et al. Analysis for dynamic response of functionally graded materials using pod based reduced order model. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):787-797 (in Chinese)) | [5] | 杨健鹏, 王惠明. 功能梯度球形水凝胶的化学力学耦合分析. 力学学报, 2019,51(4):1054-1063 | [5] | ( Yang Jianpeng, Wang Huiming. Chemomechanical analysis of a functionally graded spherical hydrogel. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1054-1063 (in Chinese)) | [6] | Yang QQ, Gao CF. Reduction of the stress concentration around an elliptic hole by using a functionally graded layer. Acta Mechanica, 2016,227(9):2427-2437 | [7] | Yang B, Chen WQ, Ding HJ. Approximate elasticity solutions for functionally graded circular plates subject to a concentrated force at the center. Mathematics and Mechanics of Solids, 2014,19(3):277-288 | [8] | Pan E, Han F. Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 2005,43(3-4):321-339 | [9] | Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 1984,53(20):1951-1953 | [10] | 范天佑. 准晶数学弹性力学和缺陷力学. 力学进展, 2000,30(2):161-174 | [10] | ( Fan Tianyou. Mathematical theory of elasticity and defects of quasicrystals. Advances in Mechanics, 2000,30(2):161-174 (in Chinese)) | [11] | Bak P. Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. Physical Review B, 1985,32(9):5764-5772 | [12] | Gao Y, Ricoeur A. Three-dimensional Green's functions for two-dimensional quasi-crystal bimaterials. Proceedings of the Royal Society A, 2011,467(2133):2622-2642 | [13] | Jaric M. Introduction to Quasicrystals. Elsevier, 2012 | [14] | Fan TY. A study on the specific heat of a one-dimensional hexagonal quasicrystal. Journal of Physics-Condensed Matter, 1999,11(45):513-517 | [15] | Dubois JM. Properties- and applications of quasicrystals and complex metallic alloys. Chemical Society Reviews, 2012,41(20):6760-6777 | [16] | Maugin GA. A note on the thermo-mechanics of elastic quasi-crystals. Archive of Applied Mechanics, 2016,86(1):245-251 | [17] | Li XY, Wang YW, Li PD, et al. Three-dimensional fundamental thermo-elastic field in an infinite space of two-dimensional hexagonal quasi-crystal with a penny-shaped/half-infinite plane crack. Theoretical and Applied Fracture Mechanics, 2017,88:18-30 | [18] | Guo JH, Yu J, Xing YM, et al. Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole. Acta Mechanica, 2016,227(9):2595-2607 | [19] | Li Y, Qin QH, Zhao MH. Analysis of 3D planar crack problems in one-dimensional hexagonal piezoelectric quasicrystals with thermal effect. part I: Theoretical formulations. International Journal of Solids and Structures, 2020, 188-189:269-281 | [20] | Li Y, Qin QH, Zhao MH. Analysis of 3D planar crack problems of one-dimensional hexagonal piezoelectric quasicrystals with thermal effect. part II: Numerical approach. International Journal of Solids and Structures, 2020, 188-189:223-232 | [21] | Zhang L, Guo JH, Xing YM. Bending deformation of multilayered one-dimensional hexagonal piezoelectric quasicrystal nanoplates with nonlocal effect. International Journal of Solids and Structures, 2018,132:278-302 | [22] | Yang LZ, Li Y, Gao Y, et al. Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates. Applied Mathematical Modelling, 2018,63:203-218 | [23] | Waksmanski N, Pan E, Yang LZ, et al. Free vibration of a multilayered one-dimensional quasi-crystal plate. Journal of Vibration and Acoustics, 2014,136(4):041019 | [24] | Li Y, Yang LZ, Zhang LL, et al. Exact thermoelectroelastic solution of layered one-dimensional quasicrystal cylindrical shells. Journal of Thermal Stresses, 2018,41(10-12):1450-1467 | [25] | 杨世铭, 陶文铨. 传热学. 北京:高等教育出版社, 2006 | [26] | Pan E. Exact solution for simply supported and multilayered magneto-electro-elastic plates. Journal of Applied Mechanics, 2001,68(4):608-618 | [27] | Li XY, Wang T, Zheng RF, et al. Fundamental thermo-electro-elastic solutions for 1D hexagonal QC. Zeitschrift für Angewandte Mathematik und Mechanik, 2015,95(5):457-468 | [28] | Ootao Y, Ishihara M. Exact solution of transient thermal stress problem of a multilayered magneto-electro-thermoelastic hollow cylinder. Journal of Solid Mechanics and Materials Engineering, 2011,5(2):90-103 | [29] | Li Y, Yang LZ, Gao Y. Thermo-elastic analysis of functionally graded multilayered two-dimensional decagonal quasicrystal plates. Zeitschrift für Angewandte Mathematik und Mechanik, 2018,98(9):1585-1602 | [30] | Waksmanski N, Pan E, Yang LZ, et al. Harmonic response of multilayered one-dimensional quasicrystal plates subjected to patch loading. Journal of Sound and Vibration, 2016,375:237-253 |
|