EI、Scopus 收录
中文核心期刊
Wang Diankai, Wen Ming, Wang Weidong, Qing Zexu. EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1337-1345. DOI: 10.6052/0459-1879-18-104
Citation: Wang Diankai, Wen Ming, Wang Weidong, Qing Zexu. EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1337-1345. DOI: 10.6052/0459-1879-18-104

EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK

  • Received Date: April 01, 2018
  • Nanosecond pulsed laser has the prominent advantage of high peak power density, so it is easy to break down air to form plasma. It has an important application value in reducing supersonic wave drag. To deeply reveal the mechanisms of wave drag reduction by nanosecond pulsed laser, in this paper, the basic physical phenomenon of the interaction of pulsed laser plasma with a normal shock is studied by experiments. A high resolved schlieren system is developed to reveal the complex wave structures. Time resolution of the schlieren system reaches up to 30 ns, with a space resolution up to 1 mm. A high speed PIV system is applied to measure the velocity and vorticity of the flow field quantificationally. Time resolution of the PIV system reaches up to 500 ns. Features of the spherical shock wave and high temperature area with low density induced by laser plasma are revealed. The flow features and evolution process of the laser plasma impacted by shock wave are revealed. Simulated results are adopted to prove the basic reason of super sonic wave drag reduced by pulsed laser plasma. Research results show that: the initial Mach number of the shock wave induced by laser plasma increases with the laser energy increasing, and the shape is gradually developed from the droplet shape to the spherical shape. The propagation velocity decreases with time and is close to the sound velocity after 50 μs. The high temperature with low density region is approximate to sphere at first, and then begins to destabilize from the downstream of the laser incident direction. A sharp spike structure is then formed. Under the impact of the normal shock, the high temperature and low density region evolves into an upper and lower symmetric double vortex ring structure, and the size increases with the laser energy. The entrainment and contra-flow of the vortex can remodel the shape of the shock wave of the nose, which is an important way of flow field remodel. It causes a notable reducing of the surface pressure of the aircraft. It is the key mechanism that causes the wave drag reduction of supersonic vehicle.
  • [1] Myrabo LN. Solar-powered global air transportation. AIAA Paper 19780689, 1978
    [2] 朱亮, 陈雄, 周长省等. 侧向喷流对超声速流动中支杆减阻降热特性影响的研究. 推进技术, 2018, 39(2): 326-334
    [2] (Zhu Liang, Chen Xiong, Zhou Changsheng, et al.Research on effects of lateral jet on drag and heat reduction characteristics of spike in supersonic flows. Journal of Propulsion Technology, 2018, 39(2): 326-334(in Chinese))
    [3] Gilinsky M, Blankson IM, Sakhrov VI, et al. Shock waves mitigation at blunt bodies using needles and shells against a supersonic flow. AIAA Paper 2001-3204, 2001
    [4] 姜维, 杨云军, 陈河梧. 带减阻杆高超声速飞行器外形气动特性研究. 实验流体力学, 2011, 25(6): 28-32
    [4] (Jiang Wei, Yang Yunjun, Chen Hewu.Investigations on aerodynamics of the spike-tipped hypersonic vehicles. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32(in Chinese))
    [5] 韩桂来. 高超声速飞行器无烧蚀自适应减阻防热新概念研究. [博士论文]. 北京: 中国科学院研究生院. 2010
    [5] (Han Guilai.Study on the new concept of hypersonic aircraft adaptive drag and heat reduction without ablation. [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences 2010(in Chinese))
    [6] 张江, 吴军飞, 尼文斌等. 带喷流激波针流动特性实验研究. 力学学报, 2016, 48(5): 1040-1048
    [6] (Zhang Jiang, Wu Junfei, Ni Wenbin, et al.Experimental investigation on flow field around blunt body with forward-facing jet and spike. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1040-1048(in Chinese))
    [7] Tret'yakov PK, Grachev GP, Ivanchenko AI, et al. Stabilization of the optical discharge in a supersonic argon flow. Physics-Doklady, 1994, 39(6): 415-416
    [8] Tret'yakov PK, Garanin AF, Grachev GN, et al. Control of supersonic flow around bodies by means of high-power recurrent optical breakdowns. Physics-Doklady, 1996, 41(11): 566-567
    [9] Adelgren R, Elliott G, Knight D, et al. T. Energy deposition in supersonic flows. AIAA Paper 2001-0885, 2001
    [10] Adelgren R, Yan H, Elliott G. Localized flow control by laser energy deposition applied to edney IV shock impingement and intersecting shocks. AIAA Paper 2033-0031, 2003
    [11] Minucci MAS, Chanes JB, Myrabo LN, et al.Investigation of a laser-supported directed-energy "air spike" in hypersonic flow. Journal of Spacecraft and Rockets, 2003, 40(1): 133-136
    [12] Oliveira AC, Minucci MAS, Toro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic flow. Beamed Energy Propulsion, 2006, 830(1): 504-509
    [13] Oliveira AC, Minucci MA, Myrabo LN, et al.Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927
    [14] Bracken RM, Myrabo LN, Nagamatsu HT, et al. Experimental/computational investigation of eclectric arc air-spikes in hypersonic flow with drag measurements. AIAA Paper 2001-3797, 2001
    [15] Riggins D, Nelson HF, Johnson E.Blunt-body wave drag reduction using focused energy deposition. AIAA Journal, 1999, 37(4): 460-467
    [16] Taguchi S, Ohnishi N, Furudate M, et al. Numerical analysis of drag reduction for supersonic blunt body by pulse energy deposition. AIAA Paper 2007-1235, 2007
    [17] Ogino Y, Ohnishi N, Taguchi S, et al.Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition. Physics of Fluids, 2009, 21(6): 0661021
    [18] Yu X, Yan H.Parametric study of laser energy deposition in Mach 8 bow shock. International Journal of Flow Control, 2012, 4(1): 19-28
    [19] Yu XJ, Yan H. Effect of single- and repetitive-pulsed thermal actuator in a Mach 8 bow shock. AIAA Paper 2013-0459, 2013
    [20] Fang J, Hong Y, Li Q.Numerical analysis of interaction between single pulse laser-induced plasma and bow shock in a supersonic flow. Plasma Science and Technology, 2012, 14(8): 741-746
    [21] 王殿恺. 激光能量控制高超声速波系结构特性研究. [博士论文]. 北京: 装备学院, 2013
    [21] (Wang Diankai.Control of hypersonic shock wave structures with laser energy deposition. [PhD Thesis]. Beijing: Equipment Academy, 2013 (in Chinese))
    [22] 王殿恺, 洪延姬, 李倩等. 激光能量沉积降低钝头体驻点压力机制分析. 推进技术, 2014, 35(2):172-177
    [22] (Wang Diankai, Hong yanji, Li Qian, et al. Investigation of stagnation pressure reduction of blunt body by laser energy deposition. Journal of Propulsion Technology, 2014, 35(2):172-177 (in Chinese))
    [23] 王殿恺,王伟东,卿泽旭等. 脉冲激光能量降低高超声速波阻机理研究. 推进技术, 2017, 35(7): 1675-1680
    [23] (Wang Diankai, Wang Weidong, Qing Zexu, et al.Study on mechanism of hypersonic wave drag reduction by pulsed laser energy deposition. Journal of Propulsion Technology, 2017, 35(7): 1675-1680(in Chinese))
    [24] Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body. AIAA Paper 2009-3585, 2009
    [25] Azarova OA.Supersonic flow control using combined energy deposition. Aerospace, 2015, 2(1): 118-134
    [26] Niederhaus J, Greenough A, Oakley G, et al.Computational parameter study for the three-dimensional shock-bubble interaction. Journal of Fluid Mechanics, 2008, 594(594): 85-124
    [27] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的 TRPIV 实验研究. 力学学报, 2016, 48(5): 1033-1039
    [27] (Su Jian, Tian Haiping, Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039(in Chinese))
    [28] 高文智, 李祝飞, 曾亿山等. 前体涡发生器对轴对称高超声速进气道激波振荡流动的影响实验. 力学学报, 2018, 50(2): 209-220
    [28] (Gao Wenzhi, Li Zhufei, Zeng Yishan, et al.Experimental investigations of effects of forebody vortex generators on the oscillatory flow of an axisymmetric hypersonic inlet. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 209-220(in Chinese))
    [29] 毛枚良, 董维中, 邓小刚等. 强激光与高超声速球锥流场干扰数值模拟研究. 空气动力学学报, 2001, 19(2): 172-176
    [29] (Mao Meiliang, Deng Weizhong, Deng Xiaogang, et al.Numerical simulating study of the interaction between a high-powered laser and the hypersonic flow field about a sphere cone. Acta Aerodynamica Sinica, 2001, 19(2): 172-176(in Chinese))
    [30] 陈豪, 石磊, 马丽华等. 纳秒激光等离子体减阻数值模拟. 激光与红外, 2014, 44(2): 131-135
    [30] (Chen Hao, Shi Lei, Ma Lihua, et al.Numerical simulation of nanosecond laser plasma drag reduction. Laser & Infrared, 2014, 44(2): 131-135(in Chinese))
    [31] 付宁, 徐德刚, 张贵忠等. 飞秒激光等离子体在高超声速飞行器减阻中的应用. 中国激光, 2015, 42(2): 0202003
    [31] (Fu Ning, Xu Degang, Zhang Guizhong, et al.Exploring femtosecond laser plasma to reduce drag of hypersonic vehicle. Chinese Journal of Lasers, 2015, 42(2): 0202003(in Chinese))
    [32] 王殿恺, 洪延姬, 李倩等. 高超声速波系结构的彩色纹影显示技术. 红外与激光工程, 2014, 43(6): 1710-1714
    [32] (Wang Diankai, Hong Yanji, Li Qian, et al.Color schlieren for hypersonic shock wave structures diagnosis. Laser & Infrared, 2014, 43(6): 1710-1714(in Chinese))
    [33] 卿泽旭, 洪延姬, 王殿恺等. 静止空气中单脉冲激光能量非对称沉积实验与数值模拟. 推进技术, 2017, 38(7): 1661-1668
    [33] (Qing Zexu, Hong Yanji, Wang Diankai, et al.Experimental and numerical study of nanosecond pulsed laser energy asymetric deposition in quiescent air. Journal of Propulsion Technology, 2017, 38(7): 1661-1668(in Chinese))
  • Related Articles

    [1]Xiong Zhuang, Wang Su, Zhang Can, Yu Hongru. SHOCK-TUBE EXPERIMENTAL STUDY AND KINETIC MODELING OF JP-10 PYROLYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 85-93. DOI: 10.6052/0459-1879-18-102
    [2]Xiong Zhuang, Zhang Yongyong, Wang Su, Li Jinping, Chen Hong, Fan Bingcheng, Cui Jiping. AN IMPROVED EXPERIMENT FOR ELECTROMAGNETIC WAVE TRANSMISSION IN SHOCK TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1328-1366. DOI: 10.6052/0459-1879-18-284
    [3]Liang Jinhu, Hu Honghao, Wang Su, Zhang Shengtao, Fan Bingcheng, Cui Jiping. SHOCK TUBE STUDY OF ETHYLENE IGNITION DELAY CHARACTERISTICS AT LOW DILUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 155-159. DOI: 10.6052/0459-1879-13-027
    [4]Weifeng Yan, Su Wang, Wei Ma, Shuaihui Li, Bingcheng Fan, Yuzhong He, Jiping Cui. Shock Tube Study of Phenolic Resin Pyrolysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 463-468. DOI: 10.6052/0459-1879-2009-4-2009-143
    [5]Su Wang, Bingcheng Fan, Yuzhong He, Jiping Cui. Effect of silane on ignition characteristics of JP10 and kerosene as shown in shock tube study[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 460-465. DOI: 10.6052/0459-1879-2007-4-2006-462
    [6]Jinping Li, Zonglin Jiang, Hong Chen, Heng Feng, Hongru Yu. Numerical study on backward-forward double-detonation driver for high enthalpy shock tubes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 343-349. DOI: 10.6052/0459-1879-2007-3-2005-432
    [7]OXV-HYDROGEN COMBUSTION AND DETONATION DRIVEN SHOCK TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 389-397. DOI: 10.6052/0459-1879-1999-4-1995-046
    [8]EXPERIMENTAL STUDY OF THE INTERACTION BETWEEN SHOCK WAVES AND VORTEX PAIR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 83-89. DOI: 10.6052/0459-1879-1996-1-1995-305
    [9]ANALYSIS AND CALCULATION OF A SHOCK TUBE WITH SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 547-554. DOI: 10.6052/0459-1879-1990-5-1995-983
  • Cited by

    Periodical cited type(10)

    1. 蒋易强,隋立起,曾虹辉,陈江. 电驱动系统换档组件磨损间隙空挡动力学特性研究. 河北科技工程职业技术大学学报. 2025(01): 104-109 .
    2. 莫帅,黄祖瑞,刘翊恒,张伟. 航空非正交偏置面齿轮分汇流系统非线性动力学. 力学学报. 2024(04): 1110-1122 . 本站查看
    3. 王晓霞,陈杰,郝恩康,刘光,崔烺,贾利,魏连坤,郝建洁,曹立军,安宇龙. 基于硬质WC涂层的不同摩擦副间的摩擦磨损特性及损伤机制研究. 表面技术. 2024(07): 76-84+115 .
    4. 朱海燕,王梦威,郑宇轩,易勇,肖乾,曾京,张卫华. 内外激励下机车齿轮磨损仿真分析. 交通运输工程学报. 2024(02): 166-178 .
    5. 莫帅,黄轩,刘文斌,张伟. 面齿轮-行星齿轮耦合传动系统非线性动力学研究. 华中科技大学学报(自然科学版). 2024(10): 40-46 .
    6. 贾超,吕云涛,贺庆拓. 新型曲线型啮合线齿轮齿面接触与磨损分析. 摩擦学学报(中英文). 2024(10): 1345-1354 .
    7. 肖玉银,盛冬发,虎积元,李子恒,俞红全. 基于SOLIDWORKS和ADAMS的三级行星轮系动态性能研究. 林业机械与木工设备. 2024(12): 62-67 .
    8. 马佳,揭豪,白梦昊,彭静,陈辉,陈得良. 基于无量纲分析的法向恢复系数模型研究. 力学学报. 2023(04): 982-990 . 本站查看
    9. 赵睿洋,薛齐文,王刚,高航. 辊道传输线锥齿轮疲劳寿命分析. 机械. 2023(07): 66-71 .
    10. 曹正,康梓秦,樊中鼎,刘先增,刘永斌. 基于动力学模型的滚动轴承磨损特性分析. 仪器仪表学报. 2023(08): 218-227 .

    Other cited types(15)

Catalog

    Article Metrics

    Article views (1636) PDF downloads (234) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return