Citation: | Huang Chunyang, Tang Shan, Peng Xianghe. STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762. DOI: 10.6052/0459-1879-17-161 |
[1] |
Biot MA. Surface instability of rubber in compression. Flow, Turbulence and Combustion, 1963, 12(2):168-182 https://www.researchgate.net/publication/225723619_Surface_Instability_of_Rubber_in_Compression
|
[2] |
Gent AN, Cho IS. Surface instabilities in compressed or bent rubber blocks. Rubber Chemistry and Technology, 1999, 72(2):253-262 doi: 10.5254/1.3538798
|
[3] |
Ghatak A, Das AL. Kink instability of a highly deformable elastic cylinder. Physical Review Letters, 2007, 99(7):076101 doi: 10.1103/PhysRevLett.99.076101
|
[4] |
Hong W, Zhao X, Suo Z. Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters, 2009, 95(11):111901 doi: 10.1063/1.3211917
|
[5] |
Needleman A, Tvergaard V, Van der Giessen E. Indentation of elastically soft and plastically compressible solids. Acta Mechanica Sinica, 2015, 31(4):473-480 doi: 10.1007/s10409-015-0467-9
|
[6] |
Huang SQ, Feng XQ. Spinodal surface instability of soft elastic thin films. Acta Mechanica Sinica, 2008, 24(3):289-296 doi: 10.1007/s10409-008-0138-1
|
[7] |
Hohlfeld E, Mahadevan L. Unfolding the sulcus. Physical Review Letters, 2011, 106(10):105702 doi: 10.1103/PhysRevLett.106.105702
|
[8] |
Cao Y, Hutchinson JW. From wrinkles to creases in elastomers:the instability and imperfection-sensitivity of wrinkling//Proc. R. Soc. A. The Royal Society, 2012, 468(2137):94-115
|
[9] |
Wong WH, Guo TF, Zhang YW, et al. Surface instability maps for soft materials. Soft Matter, 2010, 6(22):5743-5750 doi: 10.1039/c0sm00351d
|
[10] |
Mei H, Huang R, Chung JY, et al. Buckling modes of elastic thin films on elastic substrates. Applied Physics Letters, 2007, 90(15):151902 doi: 10.1063/1.2720759
|
[11] |
Sun JY, Xia S, Moon MW, et al. Folding wrinkles of a thin stiff layer on a soft substrate//Proc. R. Soc. A. The Royal Society, 2012, 468(2140):932-953
|
[12] |
Kim J, Yoon J, Hayward RC. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nature Materials, 2010, 9(2):159-164 doi: 10.1038/nmat2606
|
[13] |
Shivapooja P, Wang Q, Örihuela B, et al. Bioinspired surfaces with dynamic topography for active control of biofouling. Advanced Materials, 2013, 25(10):1430-1434. doi: 10.1002/adma.v25.10
|
[14] |
Chan EP, Karp JM, Langer RS. A "self-pinning" adhesive based on responsive surface wrinkles. Journal of Polymer Science Part B:Polymer Physics, 2011, 49(1):40-44 doi: 10.1002/polb.22165
|
[15] |
Saha K, Kim J, Irwin E, et al. Surface creasing instability of soft polyacrylamide cell culture substrates. Biophysical Journal, 2010, 99(12):L94-L96 doi: 10.1016/j.bpj.2010.09.045
|
[16] |
Xin F, Lu TJ. Acoustomechanical constitutive theory for soft materials. Acta Mechanica Sinica, 2016, 32(5):828-840 doi: 10.1007/s10409-016-0585-z
|
[17] |
Hui CY. Crack buckling in soft gels under compression. Acta Mechanica Sinica, 2012, 28(4):1098-1105 doi: 10.1007/s10409-012-0130-7
|
[18] |
Krylov S, Ilic BR, Schreiber D, et al. The pull-in behavior of electrostatically actuated bistablemicrostructures. Journal of Micromechanics and Microengineering, 2008, 18(5):055026 doi: 10.1088/0960-1317/18/5/055026
|
[19] |
Li Y, Wang XS, Meng XK. Buckling behavior of metal film/substrate structure under pure bending. Applied Physics Letters, 2008, 92(13):131902 doi: 10.1063/1.2897035
|
[20] |
Bolotin VV. Delaminations in composite structures:Its origin, buckling, growth and stability. Composites Part B:Engineering, 1996, 27(2):129-145 doi: 10.1016/1359-8368(95)00035-6
|
[21] |
Hu Y, Hiltner A, Baer E. Buckling in elastomer/plastic/elastomer 3-layer films. Polymer Composites, 2004, 25(6):653-661 doi: 10.1002/(ISSN)1548-0569
|
[22] |
Cao Y, Hutchinson JW. Wrinkling phenomena in neo-Hookean film/substrate bilayers. Journal of Applied Mechanics, 2012, 79(3):031019 doi: 10.1115/1.4005960
|
[23] |
Feng PL, Lu TJ. A three-layer structure model for the effect of a soft middle layer on Love waves propagating in layered piezoelectric systems. Acta Mechanica Sinica, 2012, 28(4):1087-1097 doi: 10.1007/s10409-012-0120-9
|
[24] |
Wang Q, Zhao X. Phase diagrams of instabilities in compressed film-substrate systems. Journal of Applied Mechanics, 2014, 81(5):051004 https://www.researchgate.net/publication/266401461_Phase_Diagrams_of_Instabilities_in_Compressed_Film-Substrate_Systems
|
[25] |
Jin L, Suo Z. Smoothening creases on surfaces of strain-stiffening materials. Journal of the Mechanics and Physics of Solids, 2015, 74:68-79 doi: 10.1016/j.jmps.2014.10.004
|
[26] |
Li Z, Zhou Z, Li Y, et al. Effect of cyclic loading on surface instability of silicone rubber under compression. Polymers, 2017, 9(4):148 doi: 10.3390/polym9040148
|
[27] |
Tang S, Gao B, Zhou Z, et al. Dimension-controlled formation of crease patterns on soft solids. Soft Matter, 2017, 13(3):619-626 doi: 10.1039/C6SM02013E
|
[28] |
Greaves GN, Greer AL, Lakes RS, et al. Poisson's ratio and modern materials. Nature Materials, 2011, 10(11):823-837 doi: 10.1038/nmat3134
|
[29] |
Tang S, Li Y, Liu WK, et al. Surface ripples of polymeric nanofibers under tension:the crucial role of Poisson's ratio. Macromolecules, 2014, 47(18):6503-6514 doi: 10.1021/ma5012599
|
[30] |
Milton GW. Composite materials with Poisson's ratios close to-1. Journal of the Mechanics and Physics of Solids, 1992, 40(5):1105-1137 doi: 10.1016/0022-5096(92)90063-8
|
[31] |
Grima JN, Alderson A, Evans KE. Auxeticbehaviour from rotating rigid units. Physica Status Solidi (b), 2005, 242(3):561-575 doi: 10.1002/(ISSN)1521-3951
|
[32] |
Babaee S, Shim J, Weaver JC, et al. 3D Soft metamaterials with negative Poisson's ratio. Advanced Materials, 2013, 25(36):5044-5049 doi: 10.1002/adma.201301986
|
[33] |
Hibbitt, Karlsson, Sorensen. ABAQUS:Theory Manual. Hibbitt, Karlsson & Sorensen, 1997 https://things.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/books/stm/default.htm
|
[34] |
Belytschko T, Liu WK, Moran B, et al. Nonlinear finite elements for continua and structures. New York:John Wiley & Sons, 2013
|
[35] |
Bertoldi K, Gei M. Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 2011, 59(1):18-42 doi: 10.1016/j.jmps.2010.10.001
|
[36] |
Li Y, Wang XS, Fan Q. Effects of elastic anisotropy on the surface stability of thin film/substrate system. International Journal of Engineering Science, 2008, 46(12):1325-1333 doi: 10.1016/j.ijengsci.2008.07.008
|
[37] |
Tang S, Li Y, Yang Y, et al. The effect of mechanical-riven volumetric change on instability patterns of bilayered soft solids. Soft Matter, 2015, 11:7911-7919 doi: 10.1039/C5SM01614B
|
[38] |
Tang S, Greene MS, Peng XH, et al. Chain confinement drives the mechanical properties of nanoporous polymers. EPL (Europhysics Letters), 2014, 106(3):36002 doi: 10.1209/0295-5075/106/36002
|
[39] |
Lu N, Wang X, Suo Z, et al. Metal films on polymer substrates stretched beyond 50%. Applied Physics Letters, 2007, 91(22):221909 doi: 10.1063/1.2817234
|
[40] |
Xiao J, Carlson A, Liu ZJ, et al. Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Applied Physics Letters, 2008, 93(1):013109 doi: 10.1063/1.2955829
|
[41] |
Kim DH, Ahn JH, Choi WM, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875):507-511 doi: 10.1126/science.1154367
|
[42] |
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973):1603-1607 doi: 10.1126/science.1182383
|
[43] |
Xu F, Lu W, Zhu Y. Controlled 3D buckling of silicon nanowires for stretchable electronics. Acs Nano, 2010, 5(1):672-678 https://www.researchgate.net/publication/49712445_Controlled_3D_Buckling_of_Silicon_Nanowires_for_Stretchable_Electronics
|
[1] | Yuan Chaokai, Wang Chun, Jiang Zonglin. ELECTRON TRANSPIRATION COOLING TECHNOLOGY AND ITS RESEARCH PROGRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 507-520. DOI: 10.6052/0459-1879-23-389 |
[2] | Feng Xuekai, Wang Baozhen, Wu Xutao, Wang Xuan, Guo Yu. IN-PLANE COMPRESSION BEHAVIOR OF SINUSOIDAL HONEYCOMB WITH CIRCULAR NODES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1910-1920. DOI: 10.6052/0459-1879-23-235 |
[3] | Jia Ran, Zhao Guiping. POISSON’S RATIO AND TRIAXIAL COMPRESSION DEFORMATION PATTERN OF CLOSED-CELL ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297. DOI: 10.6052/0459-1879-21-173 |
[4] | Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. DOI: 10.6052/0459-1879-20-333 |
[5] | Lan Yuqun, Guan Linan, Gu Huaguang. THE COMPLEX DYNAMICS OF ABNORMAL PHENOMENON OF NEURAL ELECTRONIC OSCILLATIONS INDUCED BY NEGATIVE FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1122-1133. DOI: 10.6052/0459-1879-19-038 |
[6] | Xin Ren, Xiangyu Zhang, Yimin Xie. RESEARCH PROGRESS IN AUXETIC MATERIALS AND STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-689. DOI: 10.6052/0459-1879-18-381 |
[7] | Homogenization analysis of electronic packaging based on a high order layer-discrete model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 428-434. DOI: 10.6052/0459-1879-2005-4-2004-047 |
[8] | INFINITE DIMENSIONAL LIE ALGEBRA WITH A NEW POISSON BRACKET 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 307-313. DOI: 10.6052/0459-1879-1998-3-1995-131 |
[9] | THE HOT ELECTRON AND LINE TYING STABILIZATION OF LOW FREQUENCY PLASMA INTERCHANGE MODES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 404-410. DOI: 10.6052/0459-1879-1993-4-1995-659 |
[10] | A STUDY ON ELECTRONIC SHEARING SPECKLE TECHNIQUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 725-731. DOI: 10.6052/0459-1879-1990-6-1995-1003 |
1. |
章子健,刘振海,张洪武,郑勇刚. 近似不可压软材料动力分析的完全拉格朗日物质点法. 力学学报. 2022(12): 3344-3351 .
![]() | |
2. |
黄秀峰,张振华. 聚脲涂覆三维负泊松比点阵结构的静态力学性能研究. 中国科学:物理学 力学 天文学. 2021(05): 116-134 .
![]() | |
3. |
卓国栋,李科呈,张素敏,吕朝锋. 超重力作用下软材料薄膜失稳的有限元分析. 力学季刊. 2021(03): 450-457 .
![]() | |
4. |
任鑫,张相玉,谢亿民. 负泊松比材料和结构的研究进展. 力学学报. 2019(03): 656-687 .
![]() | |
5. |
颜慧贤,魏茂金,姚豪杰. 膜-基结构光热敏感凝胶膜起皱临界波长与临界应力分析. 高分子通报. 2019(05): 51-58 .
![]() | |
6. |
曹进军,张卉婷,张亮,彭福军,恽卫东. 对角受拉方膜褶皱变形幅值的理论预测及实验验证. 力学学报. 2019(05): 1403-1410 .
![]() |