Citation: | Hu Yang, Peng Wei, Li Decai. The effective viscosity of a suspension of porous particles based on the darcy-stokes coupling model. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1922-1929. DOI: 10.6052/0459-1879-21-144 |
[1] |
Mewis J, Wagner NJ. Theory and Applications of Colloidal Suspension Rheology. Cambridge: Cambridge University Press, 2021
|
[2] |
Hasegawa H, Horikawa Y, Shikata T. Cellulose nanocrystals as a model substance for rigid rod particle suspension rheology. Macromolecules, 2020, 53(7): 2677-2685 doi: 10.1021/acs.macromol.9b02641
|
[3] |
Stickel JJ, Powell RL. Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics, 2005, 37: 129-149 doi: 10.1146/annurev.fluid.36.050802.122132
|
[4] |
Fabian DM, Hu S, Singh N, et al. Particle suspension reactors and materials for solar-driven water splitting. Energy & Environmental Science, 2015, 8(10): 2825-2850
|
[5] |
爱因斯坦, 爱因斯坦文集. 第2卷. 北京: 商务印书馆, 2010
(Einstein A. The Collected Papers of Albert Einstein, Volume 2. Beijing: Commercial Press, 2010 (in Chinese))
|
[6] |
Batchelor GK, Green JT. The determination of the bulk stress in a suspension of spherical particles to order c2. Journal of Fluid Mechanics, 1972, 56(3): 401-427 doi: 10.1017/S0022112072002435
|
[7] |
Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics, 1977, 83(1): 97-117 doi: 10.1017/S0022112077001062
|
[8] |
Zhu Z, Wang H, Peng D. Dependence of sediment suspension viscosity on solid concentration: a simple general equation. Water, 2017, 9(7): 474 doi: 10.3390/w9070474
|
[9] |
Lin CJ, Peery JH, Schowalter WR. Simple shear flow round a rigid sphere: inertial effects and suspension rheology. Journal of Fluid Mechanics, 1970, 44(1): 1-17 doi: 10.1017/S0022112070001659
|
[10] |
Kulkarni PM, Morris JF. Suspension properties at finite Reynolds number from simulated shear flow. Physics of Fluids, 2008, 20(4): 040602 doi: 10.1063/1.2911017
|
[11] |
Yeo K, Maxey MR. Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. Journal of Fluid Mechanics, 2010, 649: 205 doi: 10.1017/S0022112009993454
|
[12] |
Yeo K, Maxey MR. Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow. Physics of Fluids, 2013, 25(5): 053303 doi: 10.1063/1.4802844
|
[13] |
Jeffery GB. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, 1922, 102(715): 161-179 doi: 10.1098/rspa.1922.0078
|
[14] |
Yamamoto S, Matsuoka T. Viscosity of dilute suspensions of rodlike particles: A numerical simulation method. The Journal of Chemical Physics, 1994, 100(4): 3317-3324 doi: 10.1063/1.466423
|
[15] |
Huang H, Wu YF, Lu X. Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method. Physical Review E, 2012, 86(4): 046305 doi: 10.1103/PhysRevE.86.046305
|
[16] |
Mahmoudi Y, Hooman K, Vafai K, Convective Heat Transfer in Porous Media. Boca Raton: CRC Press, 2019
|
[17] |
Thomas A. Much ado about nothing–a decade of porous materials research. Nature Communications, 2020, 11(1): 1-3 doi: 10.1038/s41467-019-13993-7
|
[18] |
Natraj V, Chen SB. Primary electroviscous effect in a suspension of charged porous spheres. Journal of Colloid and Interface Science, 2002, 251(1): 200-207 doi: 10.1006/jcis.2002.8434
|
[19] |
Ohshima H. Primary electroviscous effect in a dilute suspension of soft particles. Langmuir, 2008, 24(13): 6453-6461 doi: 10.1021/la800027m
|
[20] |
Ohshima H. Effective viscosity of a concentrated suspension of uncharged porous spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1-3): 33-37
|
[21] |
Ohshima H. Effective viscosity of a concentrated suspension of uncharged spherical soft particles. Langmuir, 2010, 26(9): 6287-6294 doi: 10.1021/la904121p
|
[22] |
Ohshima H. Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid and Polymer Science, 2020, 298(11): 1551-1557 doi: 10.1007/s00396-020-04741-1
|
[23] |
Neale G, Nader W. Practical significance of Brinkman’s extension of Darcy’s law: coupled parallel flows within a channel and a bounding porous medium. The Canadian Journal of Chemical Engineering, 1974, 52(4): 475-478 doi: 10.1002/cjce.5450520407
|
[24] |
Vafai K, Thiyagaraja R. Analysis of flow and heat transfer at the interface region of a porous medium. International Journal of Heat and Mass Transfer, 1987, 30(7): 1391-1405 doi: 10.1016/0017-9310(87)90171-2
|
[25] |
李琪, 赵一远, 胡鹏飞. 多孔介质——自由流界面应力跳跃条件下流动特性解析解. 力学学报, 2018, 50(2): 415-426 (Li Qi, Zhao Yiyuan, Hu Pengfei. Analytical solution for porous-fluid flow characteristics with stress jump interfacial condition. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 415-426 (in Chinese) doi: 10.6052/0459-1879-17-357
|
[26] |
Prakash J, Sekhar GPR. Effective viscosity of a concentrated suspension of composite porous spherical particles. Meccanica, 2019, 54(6): 799-813 doi: 10.1007/s11012-019-01008-0
|
[27] |
Xu A, Shi L, Zhao TS. Lattice Boltzmann simulation of shear viscosity of suspensions containing porous particles. International Journal of Heat and Mass Transfer, 2018, 116: 969-976 doi: 10.1016/j.ijheatmasstransfer.2017.09.060
|
[28] |
Liu X, Huang H, Lu XY. Lattice Boltzmann study of effective viscosities of porous particle suspensions. Computers & Fluids, 2019, 181: 135-142
|
[29] |
Liu J, Li C, Ye M, et al. On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number. Powder Technology, 2019, 354: 108-114 doi: 10.1016/j.powtec.2019.05.068
|
[30] |
Wang L, Wang LP, Guo Z, et al. Volume-averaged macroscopic equation for fluid flow in moving porous media. International Journal of Heat and Mass Transfer, 2015, 82: 357-368 doi: 10.1016/j.ijheatmasstransfer.2014.11.056
|
[31] |
Zhang M, Zhao Q, Huang Z, et al. Numerical simulation of the drag and heat-transfer characteristics around and through a porous particle based on the lattice Boltzmann method. Particuology, 2021, 58: 99-107 doi: 10.1016/j.partic.2021.01.013
|
[32] |
Nield DA. The Beavers–Joseph boundary condition and related matters: a historical and critical note. Transport in Porous Media, 2009, 78(3): 537-540 doi: 10.1007/s11242-009-9344-y
|
[33] |
Beavers GS, Joseph DD. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 1967, 30(1): 197-207 doi: 10.1017/S0022112067001375
|
[34] |
Saffman PG. On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 1971, 50(2): 93-101 doi: 10.1002/sapm197150293
|
[35] |
Yang G, Coltman E, Weishaupt K, et al. On the Beavers–Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers. Transport in Porous Media, 2019, 128(2): 431-457 doi: 10.1007/s11242-019-01255-5
|
[36] |
Qiu C, He X, Li J, et al. A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. Journal of Computational Physics, 2020, 411: 109400 doi: 10.1016/j.jcp.2020.109400
|
[37] |
Cao L, He Y, Li J, et al. Decoupled modified characteristic FEMs for fully evolutionary Navier–Stokes–Darcy model with the Beavers–Joseph interface condition. Journal of Computational and Applied Mathematics, 2021, 383: 113128 doi: 10.1016/j.cam.2020.113128
|
[38] |
Yu J, Sun Y, Shi F, et al. Nitsche’s type stabilized finite element method for the fully mixed Stokes–Darcy problem with Beavers–Joseph conditions. Applied Mathematics Letters, 2020, 110: 106588 doi: 10.1016/j.aml.2020.106588
|
[39] |
张冉. 自由流和多孔介质流耦合问题的数学和数值分析[博士论文]. 济南: 山东大学, 2011
(Zhang R, Mathematical and numerical analysis of the coupling problem of free flow and porous media flow [PhD Thesis]. Jinan: Shandong University, 2011 (in Chinese))
|
[40] |
Batchelor CK, Batchelor GK. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 2000
|