Citation: | Dong Xinchang, Zhang Yi. Symmetry and Herglotz type conserved quantities for nonholonomic systems with time delay. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3302-3311. DOI: 10.6052/0459-1879-24-241 |
[1] |
徐鉴, 裴利军. 时滞系统动力学近期研究进展与展望. 力学进展, 2006, 36(1): 17-30 (Xu Jian, Pei Lijun. Advances in dynamics for delayed systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese)
Xu Jian, Pei Lijun. Advances in dynamics for delayed systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese)
|
[2] |
胡海岩, 王在华. 论迟滞与时滞. 力学学报, 2010, 42(4): 740-746 (Hu Haiyan, Wang Zaihua. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746 (in Chinese)
Hu Haiyan, Wang Zaihua. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746 (in Chinese)
|
[3] |
El’sgol’c LE. Qualitative Methods in Mathematical Analysis. Providence: American Mathematical Society, 1964
|
[4] |
Hughes DK. Variational and optimal control problems with delayed argument. Journal of Optimization Theory and Applications, 1968, 2(1): 1-14 doi: 10.1007/BF00927159
|
[5] |
Frederico GSF, Torres DFM. Noether’s symmetry theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2(3): 619-630 doi: 10.3934/naco.2012.2.619
|
[6] |
张毅, 金世欣. 含时滞的非保守系统动力学的Noether对称性. 物理学报, 2013, 62(23): 234502 (Zhang Yi, Jin Shixin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502 (in Chinese) doi: 10.7498/aps.62.234502
Zhang Yi, Jin Shixin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica, 2013, 62(23): 234502 (in Chinese) doi: 10.7498/aps.62.234502
|
[7] |
Vladimir D, Roman K, Sergey M. Lagrangian formalism and Noether-type theorems for second-order delay ordinary differential equations. Journal of Physics A: Mathematical and Theoretical, 2023, 56(34): 345203 doi: 10.1088/1751-8121/ace5f6
|
[8] |
Jin SX, Zhang Y. Noether symmetry and conserved quantity for a Hamilton system with time delay. Chinese Physics B, 2014, 23(5): 054501 doi: 10.1088/1674-1056/23/5/054501
|
[9] |
Zhai XH, Zhang Y. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dynamics, 2014, 77(1-2): 73-86 doi: 10.1007/s11071-014-1274-8
|
[10] |
Noether AE. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch Physikalische Klasse, 1918, KI(II): 235-257
|
[11] |
Arnold VI, Kozlov VV, Neishtadt AI. Mathematical Aspects of Classical and Celestial Mechanics. Berlin: Springer, 2006
|
[12] |
梅凤翔. 关于Noether定理——分析力学札记之三十. 力学与实践, 2020, 42(1): 66-74 (Mei Fengxiang. On the Noether’s theorem. Mechanics in Engineering, 2020, 42(1): 66-74 (in Chinese)
Mei Fengxiang. On the Noether’s theorem. Mechanics in Engineering, 2020, 42(1): 66-74 (in Chinese)
|
[13] |
傅景礼, 陆晓丹, 项春. 爬壁机器人系统的 Noether 对称性和守恒量. 力学学报, 2022, 54(6): 1680-1693 (Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese)
Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese)
|
[14] |
Zhang Y. Nonshifted dynamics of constrained systems on time scales under Lagrange framework and its Noether’s theorem. Communications in Nonlinear Science and Numerical Simulation, 2022, 108: 106214 doi: 10.1016/j.cnsns.2021.106214
|
[15] |
Herglotz G. Gesammelte Schriften. Göttingen: Vandenhoeck & Ruprecht, 1979
|
[16] |
Guenther RB, Guenther CM, Gottsch JA. The Herglotz lectures on contact transformations and Hamiltonian systems. Toruń: Juliusz Center for Nonlinear Studies, 1996
|
[17] |
Bravetti A. Contact Hamilton dynamics: The concept and its use. Entropy, 2017, 19: 535 doi: 10.3390/e19100535
|
[18] |
Zhan QY, Duan JQ, Li XF, et al. Numerical integration of stochastic contact Hamiltonian systems via stochastic Herglotz variational principle. Physica Scripta, 2023, 98(5): 055211 doi: 10.1088/1402-4896/acc984
|
[19] |
de León M, Lainz M, Muñoz-Lecanda MC. Optimal control, contact dynamics and Herglotz variational problem. Journal of Nonlinear Science, 2023, 33(1): 9 doi: 10.1007/s00332-022-09861-2
|
[20] |
Jordi G, Adrià M. Application of Herglotz’s variational principle to electromagnetic systems with dissipation. International Journal of Geometric Methods in Modern Physics, 2022, 19(10): 2250156 doi: 10.1142/S0219887822501560
|
[21] |
Santos SPS, Martins N, Torres DFM. Variational problems of Herglotz type with time delay: Dubois-Reymond condition and Noether’s first theorem. Discrete and Continuous Dynamical Systems, 2015, 35(9): 4593-4610 doi: 10.3934/dcds.2015.35.4593
|
[22] |
Santos SPS, Martins N, Torres DFM. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete and Continuous Dynamical Systems, Series S, 2018, 11(1): 91-102 doi: 10.3934/dcdss.2018006
|
[23] |
Zhang Y. Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry, 2020, 12(5): 845 doi: 10.3390/sym12050845
|
[24] |
Zhang Y. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. International Journal of Non-Linear Mechanics, 2018, 101: 36-43 doi: 10.1016/j.ijnonlinmec.2018.02.010
|
[25] |
Zhang Y. Noether symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type. Royal Society Open Science, 2018, 5(10): 180208 doi: 10.1098/rsos.180208
|
[26] |
Huang LQ, Zhang Y. Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems with delayed arguments. Chaos, Solitons and Fractals, 2024, 182: 114854 doi: 10.1016/j.chaos.2024.114854
|
[27] |
Zhang Y, Tian X. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem. Physics Letters A, 2019, 383(8): 691-696 doi: 10.1016/j.physleta.2018.11.034
|
[28] |
Dong XC, Zhang Y. Herglotz-type principle and first integrals for nonholonomic systems in phase space. Acta Mechanica, 2023, 234(12): 6083-6095 doi: 10.1007/s00707-023-03707-y
|
[29] |
梅凤翔, 吴惠彬, 李彦敏. 分析力学史略. 北京: 科学出版社, 2019 (Mei Fengxiang, Wu Huibin, Li Yanmin. A Brief History of Analytical Mechanics. Beijing: Science Press, 2019 (in Chinese)
Mei Fengxiang, Wu Huibin, Li Yanmin. A Brief History of Analytical Mechanics. Beijing: Science Press, 2019 (in Chinese)
|
[30] |
庄红超, 王柠, 董凯伦等. 非完整约束大负重比六足机器人多机动态协同编队避障控制策略. 机械工程学报, 2024, 60(1): 284-295 (Zhuang Hongchao, Wang Ning, Dong Kailun, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints. Journal of Mechanical Engineering, 2024, 60(1): 284-295 (in Chinese) doi: 10.3901/JME.2024.01.284
Zhuang Hongchao, Wang Ning, Dong Kailun, et al. Obstacle avoidance control strategy of multi-robot dynamic cooperative formation of large-load-ratio six-legged robot under nonholonomic constraints. Journal of Mechanical Engineering, 2024, 60(1): 284-295 (in Chinese) doi: 10.3901/JME.2024.01.284
|
[31] |
Xiong J, Wang N, Liu C. Bicycle dynamics and its circular solution on a revolution surface. Acta Mechanica Sinica, 2020, 36(1): 220-233 doi: 10.1007/s10409-019-00914-6
|
[32] |
徐宏, 傅景礼. 基于伺服电机驱动的进给传动系统扭转振动的Lie群分析方法. 力学学报, 2023, 55(9): 2000-2009 (Xu Hong, Fu Jingli. Lie group analysis for torsional vibration of serve motor driven feeder driven system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese)
Xu Hong, Fu Jingli. Lie group analysis for torsional vibration of serve motor driven feeder driven system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese)
|
[33] |
Wang BF, Li S, Guo J, et al. Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm. Neurocomputing, 2018, 282: 42-51 doi: 10.1016/j.neucom.2017.12.015
|
[34] |
王囡囡, 熊佳铭, 刘才山. 自行车动力学建模及稳定性分析研究综述. 力学学报, 2020, 52(4): 917-927 (Wang Nannan, Xiong Jiaming, Liu Caishan. Review of dynamic modeling and stability analysis of a bicycle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927 (in Chinese)
Wang Nannan, Xiong Jiaming, Liu Caishan. Review of dynamic modeling and stability analysis of a bicycle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 917-927 (in Chinese)
|
[35] |
Cara FE. Ordinary Differential Equations and Applications. Singapore: World Scientific Publishing Company, 2023
|
[36] |
梅凤翔. 李群李代数对约束力学系统的应用. 北京: 科学出版社, 1999 (Mei Fengxiang. Applications of Lie Group Lie Algebras to Systems of Constrained Mechanics. Beijing: Science Press, 1999 (in Chinese)
Mei Fengxiang. Applications of Lie Group Lie Algebras to Systems of Constrained Mechanics. Beijing: Science Press, 1999 (in Chinese)
|
[1] | Yang Chengpeng, Jia Fei, Li Jun. NONLINEAR DAMAGE CONSTITUTIVE THEORY FOR CERAMIC MATRIX COMPOSITE LAMINATES[J]. Chinese Journal of Theoretical and Applied Mechanics. DOI: 10.6052/0459-1879-25-121 |
[2] | Jia Fei, Yang Chengpeng, Song Yuanxiang. REVIEW ON STRENGTH FAILURE CRITERIA OF ANISOTROPIC COMPOSITE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1006-1024. DOI: 10.6052/0459-1879-23-507 |
[3] | Zou Hua, Wu Qifeng, Sun Shouguang. RESEARCH ON LOAD TEST SPECTRUM OF EMU CAR BOGIES BASED ON DAMAGE CONSISTENCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 115-125. DOI: 10.6052/0459-1879-20-214 |
[4] | Song Ming, Li Xuyang, Cao Yuguang, Zhen Ying, Si Weishan. DETERMINATION OF ELASTOPLASTIC PROPERTIES OF IN-SERVICE PIPELINE STEEL BASED ON BP NEURAL NETWORK AND SMALL PUNCH TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 82-92. DOI: 10.6052/0459-1879-19-297 |
[5] | Liu Lele, Zhang Xuhui, Liu Changling, Ye Yuguang. TRIAXIAL SHEAR TESTS AND STATISTICAL ANALYSES OF DAMAGE FOR METHANE HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. DOI: 10.6052/0459-1879-15-400 |
[6] | Ding Zhaodong, Li Jie. THE FATIGUE CONSTITUTIVE MODEL OF CONCRETE BASED ON MICRO-MESO MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 911-919. DOI: 10.6052/0459-1879-14-041 |
[7] | Fengping Yang Qin Sun Jinheng Luo Hua Zhang. A corrected damage law for high cycle fatigue[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 140-147. DOI: 10.6052/0459-1879-2012-1-lxxb2010-594 |
[8] | Guangping Zou Jie Lu Yang Cao Baojun Liu. Fatigue model of steel honeycomb sandwich beams at high temperature[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 953-957. DOI: 10.6052/0459-1879-2011-5-lxxb2010-751 |
[9] | EXPERIMENTAL TESTS AND NUMERICAL CALCULATIONS FOR THE 37 mm RAM ACCELERATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 450-455. DOI: 10.6052/0459-1879-1999-4-1995-053 |
[10] | SPALLING DAMAGE EVOLUTION BEHAVIOR OF SiCp/ZL101Al COMPOSITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 54-61. DOI: 10.6052/0459-1879-1997-1-1995-196 |