EI、Scopus 收录
中文核心期刊
Jia Fei, Yang Chengpeng, Song Yuanxiang. Review on strength failure criteria of anisotropic composite materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1006-1024. DOI: 10.6052/0459-1879-23-507
Citation: Jia Fei, Yang Chengpeng, Song Yuanxiang. Review on strength failure criteria of anisotropic composite materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1006-1024. DOI: 10.6052/0459-1879-23-507

REVIEW ON STRENGTH FAILURE CRITERIA OF ANISOTROPIC COMPOSITE MATERIALS

  • Received Date: October 24, 2023
  • Accepted Date: December 25, 2023
  • Available Online: December 26, 2023
  • Published Date: December 26, 2023
  • Failure criteria are of great importance in progressive damage simulation and ultimate strength prediction of composite materials. Towards the damage-failure problem of anisotropic composites, the existing failure criteria are comprehensively classified and summarized according to model architecture and development venation, with focus on the failure-mode-independent and failure-mode-dependent failure criteria. Meanwhile, the theoretical models based on the action-plane assumption were analyzed. Moreover, the basic theories and methods for constructing stress-invariant-based criteria were described, and the resultant models were presented. Finally, the other two types of failure criteria, i.e., strain energy criteria and damage-based criteria were discussed. The investigation shows that the rationality and applicability of the higher-order phenomenological failure criteria still need to be verified, and the foundation and main direction of the strength theory development for anisotropic composites is still the quadratic stress criterion; the energy criterion and the damage criterion show rationality and applicability for nonlinear and quasi-brittle composites, but their expressions are more complicated. On the basis of in-depth analysis and research, the development trend of strength theory of composites is prospected, and an important and difficult direction of "damage-fracture synergistic theory" is put forward, with a view to providing more valuable references for the design, evaluation and application of composites and their structures.
  • [1]
    黄争鸣, 张华山. 纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述. 力学进展, 2007, 37(1): 80-98 (Huang Zhengming, Zhang Huashan. Current status and future trend of researches on the strength of fiber-reinforced composites—A summary of the results from a “failure Olympics”. Advances in Mechanics, 2007, 37(1): 80-98 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.01.011

    Huang Zhengming, Zhang Huashan. Current status and future trend of researches on the strength of fiber-reinforced composites—A summary of the results from a “failure Olympics”. Advances in Mechanics, 2007, 37(1): 80-98 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.01.011
    [2]
    Bower MV, Koedam DH. Tensor polynomial failure criterion: Coefficient limits based on convexity requirements. Journal of Reinforced Plastics and Composites, 1997, 16(5): 435-477 doi: 10.1177/073168449701600504
    [3]
    Goldenblat II, Kopnov VA. Strength of glass reinforced plastics in the complex stress state. Polymer Mechanics, 1965, 1(2): 54-59
    [4]
    Ashkenazi EK. Problems of the anisotropy of strength. Polymer Mechanics, 1965, 1(2): 60-70
    [5]
    Malmeister A. Geometry of theories of strength. Polymer Mechanics, 1966, 2(4): 324-331
    [6]
    Huang CL, Kirmser PG. A criterion of strength for orthotropic materials. Fiber Science and Technology, 1975, 8(2): 103-112 doi: 10.1016/0015-0568(75)90007-X
    [7]
    Osswald PV, Osswald TA. A strength tensor based failure criterion with stress interactions. Polymer Composites, 2018, 39(8): 2826-2834 doi: 10.1002/pc.24275
    [8]
    Tennyson RC, Macdonald D, Nanyaro AP. Evaluation of the tensor polynomial failure criterion for composite materials. Journal of Composite Materials, 1978, 12(1): 63-75 doi: 10.1177/002199837801200105
    [9]
    Jiang ZQ, Tennyson RC. Closure of the cubic tensor polynomial failure surface. Journal of Composite Materials, 1989, 23(3): 208-231 doi: 10.1177/002199838902300301
    [10]
    Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London: Series A, Mathematical and Physical Sciences, 1948, 193(1033): 281-297
    [11]
    Azzi VD, Tsai SW. Anisotropic strength of composites. Experimental Mechanics, 1965, 5(9): 283-288 doi: 10.1007/BF02326292
    [12]
    Narayanaswami R, Adelman HM. Evaluation of the tensor polynomial and Hoffman strength theories for composite materials. Journal of Composite Materials, 1977, 11(4): 366-377
    [13]
    Fischer L. Optimization of orthotropic laminates. Journal of Engineering for Industry, 1967, 89(3): 399-402 doi: 10.1115/1.3610064
    [14]
    Chamis CC. Failure criteria for filamentary composites//Composite Materials: Testing and Design. STP460. American Society for Testing and Materials, Philadelphia, 1969: 336-351
    [15]
    Marin J. Theories of strength for combined stresses and nonisotropic materials. Journal of the Aeronautical Sciences, 1957, 24(4): 265-274 doi: 10.2514/8.3827
    [16]
    Hoffman O. The brittle strength of orthotropic materials. Journal of Composite Materials, 1967, 1(2): 200-206 doi: 10.1177/002199836700100210
    [17]
    Franklin HG. Classic theories of failure of anisotropic materials. Fiber Science and Technology, 1968, 1(2): 137-150 doi: 10.1016/0015-0568(68)90004-3
    [18]
    Theocaris PS. Tensor failure criteria for composites: Properties and comparison of the ellipsoid failure surfaces with experiments. Advances in Polymer Technology, 1991, 11(1): 27-40 doi: 10.1002/adv.1991.060110105
    [19]
    Tsai SW, Wu EM. A general theory of strength for anisotropic materials. Journal of Composite Materials, 1971, 5(1): 58-80 doi: 10.1177/002199837100500106
    [20]
    Cowin SC. On the strength anisotropy of bone and wood. Journal of Applied Mechanics, 1979, 46(4): 832-838 doi: 10.1115/1.3424663
    [21]
    Liu C, Huang Y, Stout MG. On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study. Acta Materialia, 1997, 45(6): 2397-2406 doi: 10.1016/S1359-6454(96)00349-7
    [22]
    Tsai SW. A survey of macroscopic failure criteria for composite materials. Journal of Reinforced Plastics and Composites, 1984, 3(1): 40-62 doi: 10.1177/073168448400300102
    [23]
    DeTeresa SJ, Larsen GJ. Reduction in the number of independent parameters for the Tsai-Wu tensor polynomial theory of strength for composite materials. Journal of Composite Materials, 2003, 37(19): 1769-1785 doi: 10.1177/002199803035183
    [24]
    Li S, Sitnikova E, Liang Y, et al. The Tsai-Wu failure criterion rationalised in the context of UD composites. Composites: Part A, 2017, 102: 207-217 doi: 10.1016/j.compositesa.2017.08.007
    [25]
    Daniel IM, Daniel SM, Fenner JS. A new yield and failure theory for composite materials under static and dynamic loading. International Journal of Solids and Structures, 2018, 148-149: 79-93 doi: 10.1016/j.ijsolstr.2017.08.036
    [26]
    Tan SC. A new approach of three-dimensional strength theory for anisotropic materials. International Journal of Fracture, 1990, 45: 35-50 doi: 10.1007/BF00012608
    [27]
    Puppo AH, Evensen HA. Strength of anisotropic materials under combined stresses. AIAA Journal, 1972, 10(4): 468-474 doi: 10.2514/3.50121
    [28]
    Norris CB. Strength of orthotropic materials subjected to combined stresses. Report 1816. Forest Product Laboratory, 1962
    [29]
    Yeh HY, Kim CH. The Yeh-stratton criterion for composite materials. Journal of Composite Materials, 1994, 28(10): 926-939 doi: 10.1177/002199839402801003
    [30]
    Yeh HL. Quadratic surface criterion for composite materials. Journal of Reinforced Plastics and Composites, 2003, 22(6): 517-532 doi: 10.1106/073168403023274
    [31]
    Chowdhury NT, Wang J, Chiu WK, et al. Predicting matrix failure in composite structures using a hybrid failure criterion. Composite Structures, 2016, 137: 148-158 doi: 10.1016/j.compstruct.2015.11.019
    [32]
    Jenkin CF. Report on materials of construction used in aircraft and aircraft engines//Great Britain Aeronautical Research Committee, 1920
    [33]
    Stowell EZ, Liu TS. On the mechanical behavior of fiber reinforced crystalline materials. International Journal of Mechanics and Physical of Solids, 1961, 9(4): 242-260 doi: 10.1016/0022-5096(61)90003-5
    [34]
    Cabrero JM, Blanco C, Gebremedhin KG, et al. Assessment of phenomenological failure criteria for wood. European Journal of Wood and Wood Products, 2012, 70: 871-882 doi: 10.1007/s00107-012-0638-3
    [35]
    刘方龙, 寇长河. 复合材料复合型二次强度准则. 复合材料学报, 1985, 2(2): 52-60 (Liu Fanglong, Kou Changhe. A new quadratic strength criterion for fiber-reinforced composites. Acta Materiae Compositae Sinica, 1985, 2(2): 52-60 (in Chinese)

    Liu Fanglong, Kou Changhe. A new quadratic strength criterion for fiber-reinforced composites. Acta Materiae Compositae Sinica, 1985, 2(2): 52-60 (in Chinese)
    [36]
    Labossiere P, Neale KW. A general strength theory for orthotropic fiber-reinforced composite laminae. Polymer Composites, 1988, 9(5): 306-317 doi: 10.1002/pc.750090503
    [37]
    Makinde A, Neale KW, Sacharuk Z. A strain-based parametric biaxial failure criterion for fiber-reinforced composites. Polymer Composites, 1992, 13(4): 263-272 doi: 10.1002/pc.750130403
    [38]
    Echaabi J, Trochu F. A methodology to derive the implicit equation of failure criteria for fibrous composite laminates. Journal of Composite Materials, 1996, 30(10): 1088-1114 doi: 10.1177/002199839603001002
    [39]
    Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47(2): 329-334 doi: 10.1115/1.3153664
    [40]
    Vogler M, Rolfes R, Camanho PP. Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 2013, 59: 50-64 doi: 10.1016/j.mechmat.2012.12.002
    [41]
    Roetsch K, Horst T. A novel approach to consider triaxial tensile stresses within the framework of a failure criterion. Journal of Applied Mathematics and Mechanics, 2022, 102: e202100232
    [42]
    Gu JF, Chen PH. A failure criterion for homogeneous and isotropic materials distinguishing the different effects of hydrostatic tension and compression. European Journal of Mechanics-A/Solids, 2018, 70: 15-22 doi: 10.1016/j.euromechsol.2018.01.013
    [43]
    Rolfes R, Vogler M, Czichon S, et al. Exploiting the structural reserve of textile composite structures by progressive failure analysis using a new orthotropic failure criterion. Computers and Structures, 2011, 89: 1214-1223 doi: 10.1016/j.compstruc.2010.09.003
    [44]
    Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 1974, 7(4): 448-464
    [45]
    Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology, 1998, 58: 1045-1067 doi: 10.1016/S0266-3538(96)00140-6
    [46]
    Dávila CG, Jaunky N, Goswami S. Failure criteria for FRP laminates in plane stress. NASA TM 2003, 613: 212663
    [47]
    Dávila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. Journal of Composite Materials, 2005, 39(4): 323-345 doi: 10.1177/0021998305046452
    [48]
    Pinho ST, Dávila CG, Camanho PP, et al. failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. NASA/TM-2005- 213530
    [49]
    Catalanotti G, Camanho PP, Marques AT. Three dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 2013, 95: 63-79 doi: 10.1016/j.compstruct.2012.07.016
    [50]
    Li N, Gu JF, Chen PH. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state. Composite Structures, 2018, 204: 466-474 doi: 10.1016/j.compstruct.2018.07.103
    [51]
    Guo J, Zhang Y, Zhou G, et al. A transverse failure criterion for unidirectional composites based on the puck failure surface theory. Composites Science and Technology, 2023, 242: 110192 doi: 10.1016/j.compscitech.2023.110192
    [52]
    Mayes JS, Hansen AC. Composite laminate failure analysis using multicontinuum theory. Composites Science and Technology, 2004, 64: 379-394 doi: 10.1016/S0266-3538(03)00219-7
    [53]
    Cuntze RG, Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Composites Science and Technology, 2004, 64: 343-377 doi: 10.1016/S0266-3538(03)00218-5
    [54]
    Li X, Guan ZD, Li ZS, et al. A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chinese Journal of Aeronautics, 2014, 27(6): 1430-1441 doi: 10.1016/j.cja.2014.10.009
    [55]
    Chen X, Sun X, Chen P, et al. Rationalized improvement of Tsai-Wu failure criterion considering different failure modes of composite materials. Composite Structures, 2021, 256: 113120 doi: 10.1016/j.compstruct.2020.113120
    [56]
    黄争鸣, 张若京. 复合材料结构受横向载荷作用的强度问题. 复合材料学报, 2005, 22(2): 148-159 (Huang Zhengming, Zhang Ruojing. On the ultimate strength of a fiber reinforced composite laminate subjected to lateral loads. Acta Materiae Compositae Sinica, 2005, 22(2): 148-159 (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.02.028

    Huang Zhengming, Zhang Ruojing. On the ultimate strength of a fiber reinforced composite laminate subjected to lateral loads. Acta Materiae Compositae Sinica, 2005, 22(2): 148-159 (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.02.028
    [57]
    Zhao LB, Qin TL, Zhang JY, et al. Modified maximum stress failure criterion for composite π joints. Journal of Composite Materials, 2012, 47(23): 2995-3008
    [58]
    Wang X, Guan Z, Liu N, et al. A 3D micromechanics based failure criterion for fiber reinforced composites under longitudinal compression. Composites: Part A, 2022, 161: 107076 doi: 10.1016/j.compositesa.2022.107076
    [59]
    Chang FK, Chang KY. A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 1987, 21(9): 834-855 doi: 10.1177/002199838702100904
    [60]
    Christensen RM. 2013 Timoshenko medal award paper-completion and closure on failure criteria for unidirectional fiber composite materials. Journal of Applied Mechanics, 2014, 81(1): 011011 doi: 10.1115/1.4025177
    [61]
    Daniel IM, Luo JJ, Schubel PM, et al. Interfiber/interlaminar failure of composites under multi-axial states of stress. Composites Science and Technology, 2009, 69: 764-771 doi: 10.1016/j.compscitech.2008.04.016
    [62]
    Daniel IM. Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 2015, 50: 429-442 doi: 10.1007/s11012-013-9829-1
    [63]
    Waddoups ME. Advanced composite material mechanics for the design and stress analyst. General Dynamics, Fort Worth Division, Report FZM-4763, 1967
    [64]
    Yen CF. A ballistic material model for continuous-fiber reinforced composites. International Journal of Impact Engineering, 2012, 46: 11-22 doi: 10.1016/j.ijimpeng.2011.12.007
    [65]
    Hou JP, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates. Composites Science and Technology, 2000, 60: 273-281 doi: 10.1016/S0266-3538(99)00126-8
    [66]
    Camanho PP, Arteiro A, Melro AR, et al. Three dimensional invariant based failure criteria for fibre reinforced composites. International Journal of Solids and Structures, 2015, 55: 92-107 doi: 10.1016/j.ijsolstr.2014.03.038
    [67]
    Liu HB, Liu J, Ding YZ, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites. Composites: Part B, 2020, 201: 108389 doi: 10.1016/j.compositesb.2020.108389
    [68]
    Patel DK, Waas AM, Yen CF. Direct numerical simulation of 3D woven textile composites subjected to tensile loading: An experimentally validated multiscale approach. Composites: Part B, 2018, 152: 102-115 doi: 10.1016/j.compositesb.2018.06.012
    [69]
    Sun QP, Zhou GW, Meng ZX, et al. Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model. Composites Science and Technology, 2019, 172: 81-95 doi: 10.1016/j.compscitech.2019.01.012
    [70]
    Sun CT, Quinn BJ, Tao J, et al. Comparative evaluation of failure analysis methods for composite laminates. DOT/FAA/AR-95/109, 1996
    [71]
    Chang FK, Lessard LB. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I—Analysis. Journal of Composite Materials, 1991, 25(1): 2-43 doi: 10.1177/002199839102500101
    [72]
    Lee JD. Three dimensional finite element analysis of damage accumulation in composite laminate. Computers and Structures, 1982, 15(3): 335-350 doi: 10.1016/0045-7949(82)90026-8
    [73]
    Ochoa OO, Engblom JJ. Analysis of progressive failure in composites. Composites Science and Technology, 1987, 28: 87-102 doi: 10.1016/0266-3538(87)90092-3
    [74]
    Soni SR, Kim RY. Delamination of composite laminates stimulated by interlaminar shear. ASTM STP, 1986, 893: 286-307
    [75]
    Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 1988, 22(12): 1141-1155 doi: 10.1177/002199838802201205
    [76]
    Long RS. Static strength of adhesively bonded ARALL-1 joints. Journal of Composite Materials, 1991, 25(24): 391-415
    [77]
    Tong L. An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints. Journal of Reinforced Plastics and Composites, 1997, 16(8): 698-713 doi: 10.1177/073168449701600803
    [78]
    Christensen RM, Deteresa SJ. Delamination failure investigation for out-of-plane loading in laminates. Journal of Composite Materials, 2004, 38(24): 2231-2238 doi: 10.1177/0021998304046431
    [79]
    Zubillaga L, Turon A, Maimí P, et al. An energy based failure criterion for matrix crack induced delamination in laminated composite structures. Composite Structures, 2014, 112: 339-344 doi: 10.1016/j.compstruct.2014.02.015
    [80]
    Nejad AD, Farrokhabadi A. A failure criterion to predict the onset of matrix cracking induced delamination in general composite laminates. Composite Structures, 2020, 235: 111564 doi: 10.1016/j.compstruct.2019.111564
    [81]
    Xiao JR, Gillespie Jr JW. A phenomenological Mohr-Coulomb failure criterion for composite laminates under interlaminar shear and compression. Journal of Composite Materials, 2007, 41(11): 1295-1309 doi: 10.1177/0021998306067318
    [82]
    Goyal VK, Johnson ER, Dávila CG. Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Composite Structures, 2004, 65: 289-305 doi: 10.1016/j.compstruct.2003.11.005
    [83]
    Griffith JE, Baldwin WM. Failure theories for generally orthotropic materials. Developments in Theoretical and Applied Mechanics, 1962, 1: 410-420
    [84]
    赵清望. 正交各向异性复合材料的歪形能强度理论. 力学与实践, 1987, 9(S1): 106-111 (Zhao Qingwang. Distortion energy strength theory for orthotropic composites. Mechanics in Engineering, 1987, 9(S1): 106-111 (in Chinese)

    Zhao Qingwang. Distortion energy strength theory for orthotropic composites. Mechanics in Engineering, 1987, 9(S1): 106-111 (in Chinese)
    [85]
    蒋国宾, 张卫国, 蒋玉川. 复合材料的应变能强度理论. 玻璃钢/复合材料, 1993, 2(2): 21-23 (Jiang Guobin, Zhang Weiguo, Jiang Yuchuan. Strength theory of composite strain energy. Composites Science and Engineering, 1993, 2(2): 21-23 (in Chinese)

    Jiang Guobin, Zhang Weiguo, Jiang Yuchuan. Strength theory of composite strain energy. Composites Science and Engineering, 1993, 2(2): 21-23 (in Chinese)
    [86]
    Sandhu RS. Nonlinear behavior of unidirectional and angle ply laminates. Journal of Aircraft, 1976, 13(2): 104-111 doi: 10.2514/3.58638
    [87]
    Butalia TS, Wolfe WE. A strain-energy based nonlinear failure criterion: Comparison of numerical predictions and experimental observations for symmetric composite laminates. Composites Science and Technology, 2002, 62: 1697-1710 doi: 10.1016/S0266-3538(01)00203-2
    [88]
    Abu-Farsakh GA, Abdel-Jawad YA. A new failure criterion for nonlinear composite materials. Journal of Composites Technology and Research, 1994, 16(2): 138-145 doi: 10.1520/CTR10403J
    [89]
    Zand B, Butalia TS, Wolfe WE, et al. A strain energy based failure criterion for nonlinear analysis of composite laminates subjected to triaxial loading. Journal of Composite Materials, 2012, 46(19-20): 2515-2537 doi: 10.1177/0021998312449891
    [90]
    Zhen S. The D criterion theory in notched composite materials. Journal of Reinforced Plastics and Composites, 1983, 2(2): 98-110 doi: 10.1177/073168448300200203
    [91]
    Siron O, Pailhes J, Lamon J. Modelling of the stress-strain behaviour of a carbon-carbon composite with a 2.5 dimensional fibre architecture under tensile and shear loads at room temperature. Composites Science and Technology, 1999, 59: 1-12 doi: 10.1016/S0266-3538(97)00241-8
    [92]
    Yang CP, Jiao GQ, Wang B, et al. Damage based failure theory and its application to 2D-C/SiC composites. Composites: Part A, 2015, 77: 181-187 doi: 10.1016/j.compositesa.2015.07.003
    [93]
    Luo D, Takezono S, Tao K, et al. The mechanical behavior analysis of CFCC with overall anisotropic damage by the micro-macro scale method. International Journal of Damage Mechanics, 2003, 12(4): 141-162
    [94]
    Abu-Farsakh GA, Odeh IN. A new damage-based failure criterion for nonlinear behavior of fibrous composite materials. International Journal of Damage Mechanics, 2023, 32(7): 940-961 doi: 10.1177/10567895231176300
    [95]
    Key CT, Schumacher SC, Hansen AC. Progressive failure modeling of woven fabric composite materials using multicontinuum theory. Composites: Part B, 2007, 38: 247-257 doi: 10.1016/j.compositesb.2006.03.006
    [96]
    杨成鹏, 矫桂琼, 郭洪宝. 纤维增强陶瓷基复合材料的D失效判据. 固体力学学报, 2015, 36(6): 524-529 (Yang Chengpeng, Jiao Guiqiong, Guo Hongbao. D failure criterion for fiber reinforced ceramic matrix composites. Chinese Journal of Solid Mechanics, 2015, 36(6): 524-529 (in Chinese)

    Yang Chengpeng, Jiao Guiqiong, Guo Hongbao. D failure criterion for fiber reinforced ceramic matrix composites. Chinese Journal of Solid Mechanics, 2015, 36(6): 524-529 (in Chinese)
    [97]
    Jain N, Koch D. Prediction of failure in ceramic matrix composites using damage-based failure criterion. Journal of Composite Materials, 2020, 4: 183
    [98]
    Camus G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites- application to a 2-D SiC/SiC. International Journal of Solids and Structures, 2000, 37: 919-942 doi: 10.1016/S0020-7683(99)00065-7
    [99]
    杨成鹏, 贾斐, 矫桂琼. 陶瓷基复合材料三维有效应力强度失效模型. 复合材料学报, 2019, 36(12): 2912-2919 (Yang Chengpeng, Jia Fei, Jiao Guiqiong. Effective stress based three-dimensional strength failure model for ceramic matrix composites. Acta Materiae Compositae Sinica, 2019, 36(12): 2912-2919 (in Chinese)

    Yang Chengpeng, Jia Fei, Jiao Guiqiong. Effective stress based three-dimensional strength failure model for ceramic matrix composites. Acta Materiae Compositae Sinica, 2019, 36(12): 2912-2919 (in Chinese)
    [100]
    Chaboche JL, Lesne PM, Maire JF. Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. International Journal of Damage Mechanics, 1995, 4(1): 5-22 doi: 10.1177/105678959500400102
    [101]
    Obert E, Daghia F, Ladevèze P, et al. Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization. Composite Structures, 2014, 117: 212-221 doi: 10.1016/j.compstruct.2014.06.035
    [102]
    Shahabi E, Forouzan MR. A damage mechanics based failure criterion for fiber reinforced polymers. Composites Science and Technology, 2017, 140: 23-29 doi: 10.1016/j.compscitech.2016.12.023
    [103]
    Yang CP, Jia F, Wang B, et al. Constitutive model and failure criterion for orthotropic ceramic matrix composites under macroscopic plane stress. Journal of the American Ceramic Society, 2021, 104(2): 1002-1013 doi: 10.1111/jace.17487
    [104]
    Huang ZM. Mechanics theories for anisotropic or composite materials. Advances in Applied Mechanics, 2023, 56: 1-137
    [105]
    Wang LS, Huang ZM. On strength prediction of laminated composites. Composites Science and Technology, 2022, 219: 109206 doi: 10.1016/j.compscitech.2021.109206
  • Related Articles

    [1]Liu Zaobao, Tian Feng, Zhou Jinxin. QUASI-STATE-BASED PERIDYNAMICS METHOD FOR THE WHOLE PROCESS OF ROCK BRITTLE FAILURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1395-1410. DOI: 10.6052/0459-1879-23-519
    [2]Wu Wencang, Dong Xinlong, Pang Zhen, Zhou Fenghua. STUDY ON FRAGMENTS DISTRIBUTION OF EXPLOSIVELY DRIVEN CYLINDERS FOR TA2 TITANIUM ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795-1806. DOI: 10.6052/0459-1879-21-017
    [3]Zhang Fanfan, Song Jingru, Ma Hansong, Liu Xiaoming, Wei Yueguang. EFFECT OF INTERLAYER THICKNESS ON THE MODE I FRACTURE ENERGY RELEASE RATE OF SANDWICH STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1080-1094. DOI: 10.6052/0459-1879-20-092
    [4]Han Qiang, Qu zhan, Ye Zhengyin, Dong Guangjian. STUDY ON FRACTURE TOUGHNESS OF MODE I OF SHALE BASED ON MICRO-MECHANICAL TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1245-1254. DOI: 10.6052/0459-1879-18-283
    [5]Zou Guangping, Chen He, Chang Zhongliang. A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125. DOI: 10.6052/0459-1879-16-239
    [6]Chen Weidong, Li Jiancao, Yu Yanchun, Yang Wenmiao, Wang wei, Yan Han. A NEW METHOD OF IDENTIFYING MAIN FAILURE MODE ABOUT TRUSS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 236-244. DOI: 10.6052/0459-1879-12-248
    [7]An adaptive importance sampling algorithm and its application for multiple failure modes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 705-711. DOI: 10.6052/0459-1879-2006-5-2005-023
    [8]Three-dimensional fracture mechanics for a mode I crack in piezoelectric media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 15-23. DOI: 10.6052/0459-1879-2005-1-2003-270
    [9]MIXED MODE DUCTILE FRACTURE EXPERIMENT AND ITS CONTROLING PARAMETER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 534-541. DOI: 10.6052/0459-1879-1999-5-1995-064
    [10]STATISTICAL FAILURE THEORY OF BUNDLE-REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 419-426. DOI: 10.6052/0459-1879-1993-4-1995-661
  • Cited by

    Periodical cited type(3)

    1. 刘佳鑫,林再文,邹志伟,程显贺,曹延君,田涯. 碳纤维H形截面支撑环脱模工艺仿真及优化. 复合材料科学与工程. 2025(03): 71-78 .
    2. 丁发兴,吴霞,张学民,陈雷,葛敬冉,肖杨,宫凤强,陈靖,李梓焜,刘增飞,崔昊,张训杰,吕飞. 材料强度理论研究进展述评. 铁道科学与工程学报. 2024(11): 4555-4587 .
    3. 李可昊,刘文光,黄政. 基于渐进损伤的螺栓连接复合材料板失效分析. 失效分析与预防. 2024(06): 396-403 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1088) PDF downloads (414) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return