Citation: | Jia Fei, Yang Chengpeng, Song Yuanxiang. Review on strength failure criteria of anisotropic composite materials. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1006-1024. DOI: 10.6052/0459-1879-23-507 |
[1] |
黄争鸣, 张华山. 纤维增强复合材料强度理论的研究现状与发展趋势——“破坏分析奥运会”评估综述. 力学进展, 2007, 37(1): 80-98 (Huang Zhengming, Zhang Huashan. Current status and future trend of researches on the strength of fiber-reinforced composites—A summary of the results from a “failure Olympics”. Advances in Mechanics, 2007, 37(1): 80-98 (in Chinese) doi: 10.3321/j.issn:1000-0992.2007.01.011
|
[2] |
Bower MV, Koedam DH. Tensor polynomial failure criterion: Coefficient limits based on convexity requirements. Journal of Reinforced Plastics and Composites, 1997, 16(5): 435-477 doi: 10.1177/073168449701600504
|
[3] |
Goldenblat II, Kopnov VA. Strength of glass reinforced plastics in the complex stress state. Polymer Mechanics, 1965, 1(2): 54-59
|
[4] |
Ashkenazi EK. Problems of the anisotropy of strength. Polymer Mechanics, 1965, 1(2): 60-70
|
[5] |
Malmeister A. Geometry of theories of strength. Polymer Mechanics, 1966, 2(4): 324-331
|
[6] |
Huang CL, Kirmser PG. A criterion of strength for orthotropic materials. Fiber Science and Technology, 1975, 8(2): 103-112 doi: 10.1016/0015-0568(75)90007-X
|
[7] |
Osswald PV, Osswald TA. A strength tensor based failure criterion with stress interactions. Polymer Composites, 2018, 39(8): 2826-2834 doi: 10.1002/pc.24275
|
[8] |
Tennyson RC, Macdonald D, Nanyaro AP. Evaluation of the tensor polynomial failure criterion for composite materials. Journal of Composite Materials, 1978, 12(1): 63-75 doi: 10.1177/002199837801200105
|
[9] |
Jiang ZQ, Tennyson RC. Closure of the cubic tensor polynomial failure surface. Journal of Composite Materials, 1989, 23(3): 208-231 doi: 10.1177/002199838902300301
|
[10] |
Hill R. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London: Series A, Mathematical and Physical Sciences, 1948, 193(1033): 281-297
|
[11] |
Azzi VD, Tsai SW. Anisotropic strength of composites. Experimental Mechanics, 1965, 5(9): 283-288 doi: 10.1007/BF02326292
|
[12] |
Narayanaswami R, Adelman HM. Evaluation of the tensor polynomial and Hoffman strength theories for composite materials. Journal of Composite Materials, 1977, 11(4): 366-377
|
[13] |
Fischer L. Optimization of orthotropic laminates. Journal of Engineering for Industry, 1967, 89(3): 399-402 doi: 10.1115/1.3610064
|
[14] |
Chamis CC. Failure criteria for filamentary composites//Composite Materials: Testing and Design. STP460. American Society for Testing and Materials, Philadelphia, 1969: 336-351
|
[15] |
Marin J. Theories of strength for combined stresses and nonisotropic materials. Journal of the Aeronautical Sciences, 1957, 24(4): 265-274 doi: 10.2514/8.3827
|
[16] |
Hoffman O. The brittle strength of orthotropic materials. Journal of Composite Materials, 1967, 1(2): 200-206 doi: 10.1177/002199836700100210
|
[17] |
Franklin HG. Classic theories of failure of anisotropic materials. Fiber Science and Technology, 1968, 1(2): 137-150 doi: 10.1016/0015-0568(68)90004-3
|
[18] |
Theocaris PS. Tensor failure criteria for composites: Properties and comparison of the ellipsoid failure surfaces with experiments. Advances in Polymer Technology, 1991, 11(1): 27-40 doi: 10.1002/adv.1991.060110105
|
[19] |
Tsai SW, Wu EM. A general theory of strength for anisotropic materials. Journal of Composite Materials, 1971, 5(1): 58-80 doi: 10.1177/002199837100500106
|
[20] |
Cowin SC. On the strength anisotropy of bone and wood. Journal of Applied Mechanics, 1979, 46(4): 832-838 doi: 10.1115/1.3424663
|
[21] |
Liu C, Huang Y, Stout MG. On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study. Acta Materialia, 1997, 45(6): 2397-2406 doi: 10.1016/S1359-6454(96)00349-7
|
[22] |
Tsai SW. A survey of macroscopic failure criteria for composite materials. Journal of Reinforced Plastics and Composites, 1984, 3(1): 40-62 doi: 10.1177/073168448400300102
|
[23] |
DeTeresa SJ, Larsen GJ. Reduction in the number of independent parameters for the Tsai-Wu tensor polynomial theory of strength for composite materials. Journal of Composite Materials, 2003, 37(19): 1769-1785 doi: 10.1177/002199803035183
|
[24] |
Li S, Sitnikova E, Liang Y, et al. The Tsai-Wu failure criterion rationalised in the context of UD composites. Composites: Part A, 2017, 102: 207-217 doi: 10.1016/j.compositesa.2017.08.007
|
[25] |
Daniel IM, Daniel SM, Fenner JS. A new yield and failure theory for composite materials under static and dynamic loading. International Journal of Solids and Structures, 2018, 148-149: 79-93 doi: 10.1016/j.ijsolstr.2017.08.036
|
[26] |
Tan SC. A new approach of three-dimensional strength theory for anisotropic materials. International Journal of Fracture, 1990, 45: 35-50 doi: 10.1007/BF00012608
|
[27] |
Puppo AH, Evensen HA. Strength of anisotropic materials under combined stresses. AIAA Journal, 1972, 10(4): 468-474 doi: 10.2514/3.50121
|
[28] |
Norris CB. Strength of orthotropic materials subjected to combined stresses. Report 1816. Forest Product Laboratory, 1962
|
[29] |
Yeh HY, Kim CH. The Yeh-stratton criterion for composite materials. Journal of Composite Materials, 1994, 28(10): 926-939 doi: 10.1177/002199839402801003
|
[30] |
Yeh HL. Quadratic surface criterion for composite materials. Journal of Reinforced Plastics and Composites, 2003, 22(6): 517-532 doi: 10.1106/073168403023274
|
[31] |
Chowdhury NT, Wang J, Chiu WK, et al. Predicting matrix failure in composite structures using a hybrid failure criterion. Composite Structures, 2016, 137: 148-158 doi: 10.1016/j.compstruct.2015.11.019
|
[32] |
Jenkin CF. Report on materials of construction used in aircraft and aircraft engines//Great Britain Aeronautical Research Committee, 1920
|
[33] |
Stowell EZ, Liu TS. On the mechanical behavior of fiber reinforced crystalline materials. International Journal of Mechanics and Physical of Solids, 1961, 9(4): 242-260 doi: 10.1016/0022-5096(61)90003-5
|
[34] |
Cabrero JM, Blanco C, Gebremedhin KG, et al. Assessment of phenomenological failure criteria for wood. European Journal of Wood and Wood Products, 2012, 70: 871-882 doi: 10.1007/s00107-012-0638-3
|
[35] |
刘方龙, 寇长河. 复合材料复合型二次强度准则. 复合材料学报, 1985, 2(2): 52-60 (Liu Fanglong, Kou Changhe. A new quadratic strength criterion for fiber-reinforced composites. Acta Materiae Compositae Sinica, 1985, 2(2): 52-60 (in Chinese)
|
[36] |
Labossiere P, Neale KW. A general strength theory for orthotropic fiber-reinforced composite laminae. Polymer Composites, 1988, 9(5): 306-317 doi: 10.1002/pc.750090503
|
[37] |
Makinde A, Neale KW, Sacharuk Z. A strain-based parametric biaxial failure criterion for fiber-reinforced composites. Polymer Composites, 1992, 13(4): 263-272 doi: 10.1002/pc.750130403
|
[38] |
Echaabi J, Trochu F. A methodology to derive the implicit equation of failure criteria for fibrous composite laminates. Journal of Composite Materials, 1996, 30(10): 1088-1114 doi: 10.1177/002199839603001002
|
[39] |
Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 1980, 47(2): 329-334 doi: 10.1115/1.3153664
|
[40] |
Vogler M, Rolfes R, Camanho PP. Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 2013, 59: 50-64 doi: 10.1016/j.mechmat.2012.12.002
|
[41] |
Roetsch K, Horst T. A novel approach to consider triaxial tensile stresses within the framework of a failure criterion. Journal of Applied Mathematics and Mechanics, 2022, 102: e202100232
|
[42] |
Gu JF, Chen PH. A failure criterion for homogeneous and isotropic materials distinguishing the different effects of hydrostatic tension and compression. European Journal of Mechanics-A/Solids, 2018, 70: 15-22 doi: 10.1016/j.euromechsol.2018.01.013
|
[43] |
Rolfes R, Vogler M, Czichon S, et al. Exploiting the structural reserve of textile composite structures by progressive failure analysis using a new orthotropic failure criterion. Computers and Structures, 2011, 89: 1214-1223 doi: 10.1016/j.compstruc.2010.09.003
|
[44] |
Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 1974, 7(4): 448-464
|
[45] |
Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology, 1998, 58: 1045-1067 doi: 10.1016/S0266-3538(96)00140-6
|
[46] |
Dávila CG, Jaunky N, Goswami S. Failure criteria for FRP laminates in plane stress. NASA TM 2003, 613: 212663
|
[47] |
Dávila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. Journal of Composite Materials, 2005, 39(4): 323-345 doi: 10.1177/0021998305046452
|
[48] |
Pinho ST, Dávila CG, Camanho PP, et al. failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. NASA/TM-2005- 213530
|
[49] |
Catalanotti G, Camanho PP, Marques AT. Three dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 2013, 95: 63-79 doi: 10.1016/j.compstruct.2012.07.016
|
[50] |
Li N, Gu JF, Chen PH. Fracture plane based failure criteria for fibre-reinforced composites under three-dimensional stress state. Composite Structures, 2018, 204: 466-474 doi: 10.1016/j.compstruct.2018.07.103
|
[51] |
Guo J, Zhang Y, Zhou G, et al. A transverse failure criterion for unidirectional composites based on the puck failure surface theory. Composites Science and Technology, 2023, 242: 110192 doi: 10.1016/j.compscitech.2023.110192
|
[52] |
Mayes JS, Hansen AC. Composite laminate failure analysis using multicontinuum theory. Composites Science and Technology, 2004, 64: 379-394 doi: 10.1016/S0266-3538(03)00219-7
|
[53] |
Cuntze RG, Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Composites Science and Technology, 2004, 64: 343-377 doi: 10.1016/S0266-3538(03)00218-5
|
[54] |
Li X, Guan ZD, Li ZS, et al. A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chinese Journal of Aeronautics, 2014, 27(6): 1430-1441 doi: 10.1016/j.cja.2014.10.009
|
[55] |
Chen X, Sun X, Chen P, et al. Rationalized improvement of Tsai-Wu failure criterion considering different failure modes of composite materials. Composite Structures, 2021, 256: 113120 doi: 10.1016/j.compstruct.2020.113120
|
[56] |
黄争鸣, 张若京. 复合材料结构受横向载荷作用的强度问题. 复合材料学报, 2005, 22(2): 148-159 (Huang Zhengming, Zhang Ruojing. On the ultimate strength of a fiber reinforced composite laminate subjected to lateral loads. Acta Materiae Compositae Sinica, 2005, 22(2): 148-159 (in Chinese) doi: 10.3321/j.issn:1000-3851.2005.02.028
|
[57] |
Zhao LB, Qin TL, Zhang JY, et al. Modified maximum stress failure criterion for composite π joints. Journal of Composite Materials, 2012, 47(23): 2995-3008
|
[58] |
Wang X, Guan Z, Liu N, et al. A 3D micromechanics based failure criterion for fiber reinforced composites under longitudinal compression. Composites: Part A, 2022, 161: 107076 doi: 10.1016/j.compositesa.2022.107076
|
[59] |
Chang FK, Chang KY. A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 1987, 21(9): 834-855 doi: 10.1177/002199838702100904
|
[60] |
Christensen RM. 2013 Timoshenko medal award paper-completion and closure on failure criteria for unidirectional fiber composite materials. Journal of Applied Mechanics, 2014, 81(1): 011011 doi: 10.1115/1.4025177
|
[61] |
Daniel IM, Luo JJ, Schubel PM, et al. Interfiber/interlaminar failure of composites under multi-axial states of stress. Composites Science and Technology, 2009, 69: 764-771 doi: 10.1016/j.compscitech.2008.04.016
|
[62] |
Daniel IM. Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 2015, 50: 429-442 doi: 10.1007/s11012-013-9829-1
|
[63] |
Waddoups ME. Advanced composite material mechanics for the design and stress analyst. General Dynamics, Fort Worth Division, Report FZM-4763, 1967
|
[64] |
Yen CF. A ballistic material model for continuous-fiber reinforced composites. International Journal of Impact Engineering, 2012, 46: 11-22 doi: 10.1016/j.ijimpeng.2011.12.007
|
[65] |
Hou JP, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates. Composites Science and Technology, 2000, 60: 273-281 doi: 10.1016/S0266-3538(99)00126-8
|
[66] |
Camanho PP, Arteiro A, Melro AR, et al. Three dimensional invariant based failure criteria for fibre reinforced composites. International Journal of Solids and Structures, 2015, 55: 92-107 doi: 10.1016/j.ijsolstr.2014.03.038
|
[67] |
Liu HB, Liu J, Ding YZ, et al. A three-dimensional elastic-plastic damage model for predicting the impact behaviour of fibre-reinforced polymer-matrix composites. Composites: Part B, 2020, 201: 108389 doi: 10.1016/j.compositesb.2020.108389
|
[68] |
Patel DK, Waas AM, Yen CF. Direct numerical simulation of 3D woven textile composites subjected to tensile loading: An experimentally validated multiscale approach. Composites: Part B, 2018, 152: 102-115 doi: 10.1016/j.compositesb.2018.06.012
|
[69] |
Sun QP, Zhou GW, Meng ZX, et al. Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model. Composites Science and Technology, 2019, 172: 81-95 doi: 10.1016/j.compscitech.2019.01.012
|
[70] |
Sun CT, Quinn BJ, Tao J, et al. Comparative evaluation of failure analysis methods for composite laminates. DOT/FAA/AR-95/109, 1996
|
[71] |
Chang FK, Lessard LB. Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I—Analysis. Journal of Composite Materials, 1991, 25(1): 2-43 doi: 10.1177/002199839102500101
|
[72] |
Lee JD. Three dimensional finite element analysis of damage accumulation in composite laminate. Computers and Structures, 1982, 15(3): 335-350 doi: 10.1016/0045-7949(82)90026-8
|
[73] |
Ochoa OO, Engblom JJ. Analysis of progressive failure in composites. Composites Science and Technology, 1987, 28: 87-102 doi: 10.1016/0266-3538(87)90092-3
|
[74] |
Soni SR, Kim RY. Delamination of composite laminates stimulated by interlaminar shear. ASTM STP, 1986, 893: 286-307
|
[75] |
Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 1988, 22(12): 1141-1155 doi: 10.1177/002199838802201205
|
[76] |
Long RS. Static strength of adhesively bonded ARALL-1 joints. Journal of Composite Materials, 1991, 25(24): 391-415
|
[77] |
Tong L. An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints. Journal of Reinforced Plastics and Composites, 1997, 16(8): 698-713 doi: 10.1177/073168449701600803
|
[78] |
Christensen RM, Deteresa SJ. Delamination failure investigation for out-of-plane loading in laminates. Journal of Composite Materials, 2004, 38(24): 2231-2238 doi: 10.1177/0021998304046431
|
[79] |
Zubillaga L, Turon A, Maimí P, et al. An energy based failure criterion for matrix crack induced delamination in laminated composite structures. Composite Structures, 2014, 112: 339-344 doi: 10.1016/j.compstruct.2014.02.015
|
[80] |
Nejad AD, Farrokhabadi A. A failure criterion to predict the onset of matrix cracking induced delamination in general composite laminates. Composite Structures, 2020, 235: 111564 doi: 10.1016/j.compstruct.2019.111564
|
[81] |
Xiao JR, Gillespie Jr JW. A phenomenological Mohr-Coulomb failure criterion for composite laminates under interlaminar shear and compression. Journal of Composite Materials, 2007, 41(11): 1295-1309 doi: 10.1177/0021998306067318
|
[82] |
Goyal VK, Johnson ER, Dávila CG. Irreversible constitutive law for modeling the delamination process using interfacial surface discontinuities. Composite Structures, 2004, 65: 289-305 doi: 10.1016/j.compstruct.2003.11.005
|
[83] |
Griffith JE, Baldwin WM. Failure theories for generally orthotropic materials. Developments in Theoretical and Applied Mechanics, 1962, 1: 410-420
|
[84] |
赵清望. 正交各向异性复合材料的歪形能强度理论. 力学与实践, 1987, 9(S1): 106-111 (Zhao Qingwang. Distortion energy strength theory for orthotropic composites. Mechanics in Engineering, 1987, 9(S1): 106-111 (in Chinese)
|
[85] |
蒋国宾, 张卫国, 蒋玉川. 复合材料的应变能强度理论. 玻璃钢/复合材料, 1993, 2(2): 21-23 (Jiang Guobin, Zhang Weiguo, Jiang Yuchuan. Strength theory of composite strain energy. Composites Science and Engineering, 1993, 2(2): 21-23 (in Chinese)
|
[86] |
Sandhu RS. Nonlinear behavior of unidirectional and angle ply laminates. Journal of Aircraft, 1976, 13(2): 104-111 doi: 10.2514/3.58638
|
[87] |
Butalia TS, Wolfe WE. A strain-energy based nonlinear failure criterion: Comparison of numerical predictions and experimental observations for symmetric composite laminates. Composites Science and Technology, 2002, 62: 1697-1710 doi: 10.1016/S0266-3538(01)00203-2
|
[88] |
Abu-Farsakh GA, Abdel-Jawad YA. A new failure criterion for nonlinear composite materials. Journal of Composites Technology and Research, 1994, 16(2): 138-145 doi: 10.1520/CTR10403J
|
[89] |
Zand B, Butalia TS, Wolfe WE, et al. A strain energy based failure criterion for nonlinear analysis of composite laminates subjected to triaxial loading. Journal of Composite Materials, 2012, 46(19-20): 2515-2537 doi: 10.1177/0021998312449891
|
[90] |
Zhen S. The D criterion theory in notched composite materials. Journal of Reinforced Plastics and Composites, 1983, 2(2): 98-110 doi: 10.1177/073168448300200203
|
[91] |
Siron O, Pailhes J, Lamon J. Modelling of the stress-strain behaviour of a carbon-carbon composite with a 2.5 dimensional fibre architecture under tensile and shear loads at room temperature. Composites Science and Technology, 1999, 59: 1-12 doi: 10.1016/S0266-3538(97)00241-8
|
[92] |
Yang CP, Jiao GQ, Wang B, et al. Damage based failure theory and its application to 2D-C/SiC composites. Composites: Part A, 2015, 77: 181-187 doi: 10.1016/j.compositesa.2015.07.003
|
[93] |
Luo D, Takezono S, Tao K, et al. The mechanical behavior analysis of CFCC with overall anisotropic damage by the micro-macro scale method. International Journal of Damage Mechanics, 2003, 12(4): 141-162
|
[94] |
Abu-Farsakh GA, Odeh IN. A new damage-based failure criterion for nonlinear behavior of fibrous composite materials. International Journal of Damage Mechanics, 2023, 32(7): 940-961 doi: 10.1177/10567895231176300
|
[95] |
Key CT, Schumacher SC, Hansen AC. Progressive failure modeling of woven fabric composite materials using multicontinuum theory. Composites: Part B, 2007, 38: 247-257 doi: 10.1016/j.compositesb.2006.03.006
|
[96] |
杨成鹏, 矫桂琼, 郭洪宝. 纤维增强陶瓷基复合材料的D失效判据. 固体力学学报, 2015, 36(6): 524-529 (Yang Chengpeng, Jiao Guiqiong, Guo Hongbao. D failure criterion for fiber reinforced ceramic matrix composites. Chinese Journal of Solid Mechanics, 2015, 36(6): 524-529 (in Chinese)
|
[97] |
Jain N, Koch D. Prediction of failure in ceramic matrix composites using damage-based failure criterion. Journal of Composite Materials, 2020, 4: 183
|
[98] |
Camus G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites- application to a 2-D SiC/SiC. International Journal of Solids and Structures, 2000, 37: 919-942 doi: 10.1016/S0020-7683(99)00065-7
|
[99] |
杨成鹏, 贾斐, 矫桂琼. 陶瓷基复合材料三维有效应力强度失效模型. 复合材料学报, 2019, 36(12): 2912-2919 (Yang Chengpeng, Jia Fei, Jiao Guiqiong. Effective stress based three-dimensional strength failure model for ceramic matrix composites. Acta Materiae Compositae Sinica, 2019, 36(12): 2912-2919 (in Chinese)
|
[100] |
Chaboche JL, Lesne PM, Maire JF. Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites. International Journal of Damage Mechanics, 1995, 4(1): 5-22 doi: 10.1177/105678959500400102
|
[101] |
Obert E, Daghia F, Ladevèze P, et al. Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization. Composite Structures, 2014, 117: 212-221 doi: 10.1016/j.compstruct.2014.06.035
|
[102] |
Shahabi E, Forouzan MR. A damage mechanics based failure criterion for fiber reinforced polymers. Composites Science and Technology, 2017, 140: 23-29 doi: 10.1016/j.compscitech.2016.12.023
|
[103] |
Yang CP, Jia F, Wang B, et al. Constitutive model and failure criterion for orthotropic ceramic matrix composites under macroscopic plane stress. Journal of the American Ceramic Society, 2021, 104(2): 1002-1013 doi: 10.1111/jace.17487
|
[104] |
Huang ZM. Mechanics theories for anisotropic or composite materials. Advances in Applied Mechanics, 2023, 56: 1-137
|
[105] |
Wang LS, Huang ZM. On strength prediction of laminated composites. Composites Science and Technology, 2022, 219: 109206 doi: 10.1016/j.compscitech.2021.109206
|
[1] | Liu Zaobao, Tian Feng, Zhou Jinxin. QUASI-STATE-BASED PERIDYNAMICS METHOD FOR THE WHOLE PROCESS OF ROCK BRITTLE FAILURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1395-1410. DOI: 10.6052/0459-1879-23-519 |
[2] | Wu Wencang, Dong Xinlong, Pang Zhen, Zhou Fenghua. STUDY ON FRAGMENTS DISTRIBUTION OF EXPLOSIVELY DRIVEN CYLINDERS FOR TA2 TITANIUM ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1795-1806. DOI: 10.6052/0459-1879-21-017 |
[3] | Zhang Fanfan, Song Jingru, Ma Hansong, Liu Xiaoming, Wei Yueguang. EFFECT OF INTERLAYER THICKNESS ON THE MODE I FRACTURE ENERGY RELEASE RATE OF SANDWICH STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1080-1094. DOI: 10.6052/0459-1879-20-092 |
[4] | Han Qiang, Qu zhan, Ye Zhengyin, Dong Guangjian. STUDY ON FRACTURE TOUGHNESS OF MODE I OF SHALE BASED ON MICRO-MECHANICAL TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1245-1254. DOI: 10.6052/0459-1879-18-283 |
[5] | Zou Guangping, Chen He, Chang Zhongliang. A MODIFIED MODE II DYNAMIC FRACTURE TEST TECHNIQUE BASED ON SHTB[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 117-125. DOI: 10.6052/0459-1879-16-239 |
[6] | Chen Weidong, Li Jiancao, Yu Yanchun, Yang Wenmiao, Wang wei, Yan Han. A NEW METHOD OF IDENTIFYING MAIN FAILURE MODE ABOUT TRUSS STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 236-244. DOI: 10.6052/0459-1879-12-248 |
[7] | An adaptive importance sampling algorithm and its application for multiple failure modes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 705-711. DOI: 10.6052/0459-1879-2006-5-2005-023 |
[8] | Three-dimensional fracture mechanics for a mode I crack in piezoelectric media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 15-23. DOI: 10.6052/0459-1879-2005-1-2003-270 |
[9] | MIXED MODE DUCTILE FRACTURE EXPERIMENT AND ITS CONTROLING PARAMETER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 534-541. DOI: 10.6052/0459-1879-1999-5-1995-064 |
[10] | STATISTICAL FAILURE THEORY OF BUNDLE-REINFORCED COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 419-426. DOI: 10.6052/0459-1879-1993-4-1995-661 |