[1] | Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303 | [2] | Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Materialia, 2017,132:35-48 | [3] | Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics, 2010,18(9):1758-1765 | [4] | Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013,61(15):5743-5755 | [5] | Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011,19(5):698-706 | [6] | 杨铭, 刘雄军, 吴渊 等. 高熵非晶合金研究进展. 中国科学: 物理学力学天文学, 2020,50(6):067003 | [6] | ( Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress on high-entropy bulk metallic glasses. Scientia Sinica Physica, Mechanica & Astronomica, 2020,50(6):067003 (in Chinese)) | [7] | 温晓灿, 张凡, 雷智锋 等. 高熵合金中的第二相强韧化. 中国材料进展, 2019,38(3):242-250 | [7] | ( Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys. Materials China, 2019,38(3):242-250 (in Chinese)) | [8] | 张蔚冉, Peter KL, 张勇. 高熵合金材料研究进展. 中国科学: 材料科学, 2018,061(001):2-22 | [8] | ( Zhang Weiran, Peter KL, Zhang Yong. Science and technology in high-entropy alloys. Science China Materials, 2018,061(001):2-22 (in Chinese)) | [9] | 张勇, 周云军, 惠希东 等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑: 物理学力学天文学), 2008(4):439-448 | [9] | ( Zhang Yong, Zhou Yunjun, Hui Xidong, et al. Alloying effect of bulk metallic glass and high entropy alloy. Scientia Sinica $($Physica, Mechanica & Astronomica$)$, 2008(4):439-448 (in Chinese)) | [10] | 吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化. 金属学报, 2018,54(11):1553-1566 | [10] | ( Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation Behavior and toughening of high-entropy alloys. Acta Metallurgica Sinica, 2018,54(11):1553-1566 (in Chinese)) | [11] | 李建国, 黄瑞瑞, 张倩 等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020,52(2):333-359 | [11] | ( Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical Properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):333-359 (in Chinese)) | [12] | Liu XF, Tian ZL, Zhang XF, et al. "Self-sharpening" tungsten high-entropy alloy. Acta Materialia, 2020,186:257-266 | [13] | Zhang ZR, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa 0.53. Materials & Design, 2017,133:435-443 | [14] | 张先锋, 李向东, 沈培辉 等. 终点效应学. 北京: 北京理工大学出版社, 2017: 2-3 | [14] | ( Zhang Xianfeng, Li Xiangdong, Shen Peihui, et al. Terminal Effects. Beijing: Beijing Institute of Technology Press, 2017: 2-3(in Chinese)) | [15] | 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析. 爆炸与冲击, 2005(5):95-98 | [15] | ( Mi Shuangsahn, Zhang Xien, Tao Guiming, et al. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target. Explosion and Shock Waves, 2005(5):95-98 (in Chinese)) | [16] | 徐豫新, 王树山, 伯雪飞 等. 钨合金球形破片对低碳钢的穿甲极限. 振动与冲击, 2011,30(5):192-195 | [16] | ( Xu Yuxin, Wang Shunshang, Bai Xuefei, et al. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011,30(5):192-195 (in Chinese)) | [17] | 谈梦婷, 张先锋, 包阔 等. 装甲陶瓷的界面击溃效应. 力学进展, 2019,49:201905 | [17] | ( Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019,49:201905 (in Chinese)) | [18] | 杨益, 郑颖, 王坤. 高密度活性材料及其毁伤效应进展研究. 兵器材料科学与工程, 2013(4):85-89 | [18] | ( Yang Yi, Zheng Yin, Wang Kun. Development progress of high density reactive materials and their damage effect. Ordnance Material Science and Engineering, 2013(4):85-89 (in Chinese)) | [19] | 熊玮, 张先锋, 陈亚旭 等. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究. 爆炸与冲击, 2019,39(5):130-138 | [19] | ( Xiong Wei, Zhang Xianfeng, Chen Yaxu, et al. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites. Explosion and Shock Waves, 2019,39(5):130-138 (in Chinese)) | [20] | Xiong W, Zhang XF, Zheng L, et al. The shock-induced chemical reaction behaviour of Al/Ni composites by cold rolling and powder compaction. Journal of Materials Science, 2019,54(8):6651-6667 | [21] | Zhang XF, Zhang J, Qiao L, et al. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates. Materials Science & Engineering A, 2013,581:48-55 | [22] | Zhang XF, Shi AS, Qiao L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials. Journal of Applied Physics, 2013,113(8):083508 | [23] | 陈曦, 杜成鑫, 程春 等. Zr基非晶合金材料的冲击释能特性. 兵器材料科学与工程, 2018,41(6):44-49 | [23] | ( Chen Xi, Du Chengxin, Cheng Chun, et al. Impact energy releasing characteristics of Zr-based amorphous alloy. Ordnance Material Science and Engineering, 2018,41(6):44-49 (in Chinese)) | [24] | 张云峰, 罗兴柏, 刘国庆 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性. 爆炸与冲击, 2020,40(2):60-66 | [24] | ( Zhang Yunfeng, Luo Xingbai, Liu Guoqing, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA targets. Explosion and Shock Waves, 2020,40(2):60-66 (in Chinese)) | [25] | 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013,33(5):177-351 | [25] | ( Wang Weihua. The nature and characteristics of amorphous matter. Progress in Physics, 2013,33(5):177-351 (in Chinese)) | [26] | 董杰, 王雨田, 胡晶 等. 非晶合金剪切带动力学行为研究. 力学学报, 2020,52(2):379-391 | [26] | ( Dong jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):379-391 (in Chinese)) | [27] | 郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368 | [27] | ( Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese)) | [28] | 胡时胜. 霍普金森压杆技术. 兵器材料科学与工程, 1991(011):40-47 | [28] | ( Hu Shisheng. Hopkinson pressure bar technology. Ordnance Material Science and Engineering, 1991(011):40-47 (in Chinese)) | [29] | 钦拉 V.K., 李培宁. 在杆中切口间断处脉冲波的反射及透射. 固体力学学报, 1983(2):46-58 | [29] | ( Qingla VK, Li Peining. Reflection and transmission of a pulse at a notch-discontinue in a rod. Acta Mechanica Solida Sinica, 1983(2):46-58 (in Chinese)) | [30] | 肖大武, 胡时胜. SHPB实验试件横截面积不匹配效应的研究. 爆炸与冲击, 2007(1):87-90 | [30] | ( Xiao Dawu, Hu Shisheng. Study of two-dimensional effect on SHPB experiment. Explosion and Shock Waves, 2007(1):87-90 (in Chinese)) | [31] | Zhang TW, Jiao ZM, Wang ZH, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy. Scripta Materialia, 2017,136:15-19 | [32] | 王璐, 马胜国, 赵聃 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能. 热加工工艺, 2018,47(24):86-89 | [32] | ( Wang Lu, Ma Shengguo, Zhao Ran, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load. Hot Working Technology, 2018,47(24):86-89 (in Chinese)) | [33] | 熊冉, 高欣宝, 许兴春 等. 破片侵彻金属薄板后的剩余速度研究. 爆破, 2013,30(4):47-50 | [33] | ( Xiong Ran, Gao Xinbao, Xu Xingchun, et al. Research on residual velocity of fragment after penetrating metallic sheet. Blasting, 2013,30(4):47-50 (in Chinese)) |
|