EI、Scopus 收录
中文核心期刊

WFeNiMo高熵合金动态力学行为及侵彻性能研究

陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏

陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
引用本文: 陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
Citation: Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. CSTR: 32045.14.0459-1879-20-166
引用本文: 陈海华, 张先锋, 熊玮, 刘闯, 魏海洋, 汪海英, 戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. CSTR: 32045.14.0459-1879-20-166
Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. CSTR: 32045.14.0459-1879-20-166
Citation: Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. CSTR: 32045.14.0459-1879-20-166

WFeNiMo高熵合金动态力学行为及侵彻性能研究

基金项目: 1)国家自然科学基金(11790292);超高速碰撞研究中心开放基金(20200106);江苏省研究生科研创新计划(KYCX19_0321)
详细信息
    通讯作者:

    陈海华

    张先锋

  • 中图分类号: O385

DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY

  • 摘要: 为了探究不同应变速率下WFeNiMo高熵合金的变形行为和侵彻性能, 采用万能材料试验机、分离式霍普金森压杆开展了高熵合金的静动态力学性能试验, 讨论了其在不同应变速率下变形特征微观机制. 基于弹道枪试验平台开展了高熵合金与典型钨合金(93W-4.9Ni-2.1Fe,wt%)破片对有限厚钢靶侵彻作用性能试验研究, 分析了两种合金破片侵彻作用过程与靶板破坏特征、侵彻穿孔能量消耗与撞击速度间的关系. 结果表明: 高熵合金、钨合金材料屈服强度与应变率呈正相关, 且在相同的应变率下高熵合金具有更高的屈服强度; 随着应变率的提高, 高熵合金由脆性断裂、韧脆混合的准解理断裂发展至具有黏着特性的破碎变形模式; 高熵合金具有较强的局部绝热变形能力, 在侵彻薄钢靶时体现出较高的剪切敏感性; 相同撞击速度下, 高熵合金破片穿靶消耗的能量低于钨合金破片, 对于薄钢靶具有更强的侵彻穿透能力. 高熵合金具有优异的力学性能和侵彻能力, 在高速撞击薄靶板时除了传统的剪切冲塞作用还具有一定的能量释放特性, 在预制破片上有较好的应用前景.
    Abstract: In order to investigate the deformation behavior and penetration performance of WFeNiMo high-entropy alloy under different strain rates, the static mechanical properties of the high-entropy alloy was tested by universal material testing machine and the dynamic mechanical properties of the high-entropy alloy was tested by the SHPB (split Hopkinson pressure bar). The micro mechanism of deformation characteristics of the alloy under different strain rates was also discussed. Based on the ballistic gun test platform, the fragments penetration performance of the high-entropy alloy and the typical tungsten alloy (93W-4.9Ni-2.1Fe, wt%) to the finite thickness steel target was studied. The relationship between the penetration process of the two kinds of alloy fragments and the target damage characteristics, the energy consumption of penetration and the impact velocity was analyzed. The results show that the yield strength and strain rate of the high-entropy alloy and tungsten alloy present a positively correlation. The yield strength of the high-entropy alloy is higher than the tungsten alloy under the same strain rate. With the increase of strain rate of deformation, the high-entropy alloy develops from the brittle fracture, quasi-cleavage with the mixing of tough and brittle characters to the fracture deformation mode with adhesive characteristics. The high-entropy alloy has a strong local adiabatic deformation ability and high shear sensitivity when the fragments penetrate into the thin steel targets. The energy consumption of the high-entropy alloy fragments penetrating into the target is lower than the tungsten alloy fragments under the same impact velocity. The high--entropy alloy has excellent mechanical properties and superior performance in the penetration ability. In addition to the traditional shear plug effect, there is a certain energy release characteristic when the thin target is impacted at high speed by the high-entropy alloy fragments and it has a good application prospect in the field of the preformed fragments.
  • [1] Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303
    [2] Miao J, Slone CE, Smith TM, et al. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Materialia, 2017,132:35-48
    [3] Senkov ON, Wilks GB, Miracle DB, et al. Refractory high-entropy alloys. Intermetallics, 2010,18(9):1758-1765
    [4] Otto F, Dlouhy A, Somsen C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013,61(15):5743-5755
    [5] Senkov ON, Wilks GB, Scott JM, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011,19(5):698-706
    [6] 杨铭, 刘雄军, 吴渊 等. 高熵非晶合金研究进展. 中国科学: 物理学力学天文学, 2020,50(6):067003
    [6] ( Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress on high-entropy bulk metallic glasses. Scientia Sinica Physica, Mechanica & Astronomica, 2020,50(6):067003 (in Chinese))
    [7] 温晓灿, 张凡, 雷智锋 等. 高熵合金中的第二相强韧化. 中国材料进展, 2019,38(3):242-250
    [7] ( Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys. Materials China, 2019,38(3):242-250 (in Chinese))
    [8] 张蔚冉, Peter KL, 张勇. 高熵合金材料研究进展. 中国科学: 材料科学, 2018,061(001):2-22
    [8] ( Zhang Weiran, Peter KL, Zhang Yong. Science and technology in high-entropy alloys. Science China Materials, 2018,061(001):2-22 (in Chinese))
    [9] 张勇, 周云军, 惠希东 等. 大块金属玻璃及高熵合金的合金化作用. 中国科学(G辑: 物理学力学天文学), 2008(4):439-448
    [9] ( Zhang Yong, Zhou Yunjun, Hui Xidong, et al. Alloying effect of bulk metallic glass and high entropy alloy. Scientia Sinica $($Physica, Mechanica & Astronomica$)$, 2008(4):439-448 (in Chinese))
    [10] 吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化. 金属学报, 2018,54(11):1553-1566
    [10] ( Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation Behavior and toughening of high-entropy alloys. Acta Metallurgica Sinica, 2018,54(11):1553-1566 (in Chinese))
    [11] 李建国, 黄瑞瑞, 张倩 等. 高熵合金的力学性能及变形行为研究进展. 力学学报, 2020,52(2):333-359
    [11] ( Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechnical Properties and behaviors of high entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):333-359 (in Chinese))
    [12] Liu XF, Tian ZL, Zhang XF, et al. "Self-sharpening" tungsten high-entropy alloy. Acta Materialia, 2020,186:257-266
    [13] Zhang ZR, Zhang H, Tang Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa 0.53. Materials & Design, 2017,133:435-443
    [14] 张先锋, 李向东, 沈培辉 等. 终点效应学. 北京: 北京理工大学出版社, 2017: 2-3
    [14] ( Zhang Xianfeng, Li Xiangdong, Shen Peihui, et al. Terminal Effects. Beijing: Beijing Institute of Technology Press, 2017: 2-3(in Chinese))
    [15] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析. 爆炸与冲击, 2005(5):95-98
    [15] ( Mi Shuangsahn, Zhang Xien, Tao Guiming, et al. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target. Explosion and Shock Waves, 2005(5):95-98 (in Chinese))
    [16] 徐豫新, 王树山, 伯雪飞 等. 钨合金球形破片对低碳钢的穿甲极限. 振动与冲击, 2011,30(5):192-195
    [16] ( Xu Yuxin, Wang Shunshang, Bai Xuefei, et al. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011,30(5):192-195 (in Chinese))
    [17] 谈梦婷, 张先锋, 包阔 等. 装甲陶瓷的界面击溃效应. 力学进展, 2019,49:201905
    [17] ( Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019,49:201905 (in Chinese))
    [18] 杨益, 郑颖, 王坤. 高密度活性材料及其毁伤效应进展研究. 兵器材料科学与工程, 2013(4):85-89
    [18] ( Yang Yi, Zheng Yin, Wang Kun. Development progress of high density reactive materials and their damage effect. Ordnance Material Science and Engineering, 2013(4):85-89 (in Chinese))
    [19] 熊玮, 张先锋, 陈亚旭 等. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究. 爆炸与冲击, 2019,39(5):130-138
    [19] ( Xiong Wei, Zhang Xianfeng, Chen Yaxu, et al. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites. Explosion and Shock Waves, 2019,39(5):130-138 (in Chinese))
    [20] Xiong W, Zhang XF, Zheng L, et al. The shock-induced chemical reaction behaviour of Al/Ni composites by cold rolling and powder compaction. Journal of Materials Science, 2019,54(8):6651-6667
    [21] Zhang XF, Zhang J, Qiao L, et al. Experimental study of the compression properties of Al/W/PTFE granular composites under elevated strain rates. Materials Science & Engineering A, 2013,581:48-55
    [22] Zhang XF, Shi AS, Qiao L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials. Journal of Applied Physics, 2013,113(8):083508
    [23] 陈曦, 杜成鑫, 程春 等. Zr基非晶合金材料的冲击释能特性. 兵器材料科学与工程, 2018,41(6):44-49
    [23] ( Chen Xi, Du Chengxin, Cheng Chun, et al. Impact energy releasing characteristics of Zr-based amorphous alloy. Ordnance Material Science and Engineering, 2018,41(6):44-49 (in Chinese))
    [24] 张云峰, 罗兴柏, 刘国庆 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性. 爆炸与冲击, 2020,40(2):60-66
    [24] ( Zhang Yunfeng, Luo Xingbai, Liu Guoqing, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite fragment against RHA targets. Explosion and Shock Waves, 2020,40(2):60-66 (in Chinese))
    [25] 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013,33(5):177-351
    [25] ( Wang Weihua. The nature and characteristics of amorphous matter. Progress in Physics, 2013,33(5):177-351 (in Chinese))
    [26] 董杰, 王雨田, 胡晶 等. 非晶合金剪切带动力学行为研究. 力学学报, 2020,52(2):379-391
    [26] ( Dong jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):379-391 (in Chinese))
    [27] 郝奇, 乔吉超, Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368
    [27] ( Hao Qi, Qiao Jichao, Jean-Marc Pelletier. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese))
    [28] 胡时胜. 霍普金森压杆技术. 兵器材料科学与工程, 1991(011):40-47
    [28] ( Hu Shisheng. Hopkinson pressure bar technology. Ordnance Material Science and Engineering, 1991(011):40-47 (in Chinese))
    [29] 钦拉 V.K., 李培宁. 在杆中切口间断处脉冲波的反射及透射. 固体力学学报, 1983(2):46-58
    [29] ( Qingla VK, Li Peining. Reflection and transmission of a pulse at a notch-discontinue in a rod. Acta Mechanica Solida Sinica, 1983(2):46-58 (in Chinese))
    [30] 肖大武, 胡时胜. SHPB实验试件横截面积不匹配效应的研究. 爆炸与冲击, 2007(1):87-90
    [30] ( Xiao Dawu, Hu Shisheng. Study of two-dimensional effect on SHPB experiment. Explosion and Shock Waves, 2007(1):87-90 (in Chinese))
    [31] Zhang TW, Jiao ZM, Wang ZH, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy. Scripta Materialia, 2017,136:15-19
    [32] 王璐, 马胜国, 赵聃 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能. 热加工工艺, 2018,47(24):86-89
    [32] ( Wang Lu, Ma Shengguo, Zhao Ran, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load. Hot Working Technology, 2018,47(24):86-89 (in Chinese))
    [33] 熊冉, 高欣宝, 许兴春 等. 破片侵彻金属薄板后的剩余速度研究. 爆破, 2013,30(4):47-50
    [33] ( Xiong Ran, Gao Xinbao, Xu Xingchun, et al. Research on residual velocity of fragment after penetrating metallic sheet. Blasting, 2013,30(4):47-50 (in Chinese))
  • 期刊类型引用(22)

    1. 马玉松,何金燕,李红欣,张兴高. Al_(0.3)V_(0.1)NbZr_(1.3)Ti_(1.4)Ta_(0.8)高熵合金的力学行为和侵彻释能特性. 兵器材料科学与工程. 2025(01): 19-25 . 百度学术
    2. 陈嘉琳,李述涛,安明,艾天淳,马上,陈叶青. 晶界类型对Al_(0.3)CoCrFeNi高熵合金压缩力学性能的影响及机制研究. 力学学报. 2025(03): 658-670 . 本站查看
    3. 王开心,仝永刚,陈永雄,王洁,张舒研,梁秀兵. 高熵合金动态力学行为研究进展. 材料工程. 2024(01): 57-69 . 百度学术
    4. Jia-yu Meng,Jing-zhi He,Bin Zhang,Jin Chen,Shun Li,Dun Niu,Yu Tang. The effect of Ti and Zr content on the structure, mechanics and energy-release characteristics of Ti—Zr—Ta alloys. Defence Technology. 2024(01): 343-350 . 必应学术
    5. 薛浩,王涛,黄广炎,崔欣雨,韩洪伟. 增材制造316L不锈钢球形破片的弹道性能. 兵工学报. 2024(02): 395-406 . 百度学术
    6. 车明月,常孟周,范飞高,陈闯,唐恩凌,郭凯,贺丽萍. 低温下TiZrHf系高熵合金的动态压缩力学特性与点火行为. 有色金属设计. 2024(01): 141-148 . 百度学术
    7. 朱擎,李述涛,陈叶青,马上,魏万里,张生,陈嘉琳. 高强钢-钢筋混凝土复合防护结构厚度极限计算方法. 力学学报. 2024(07): 2077-2090 . 本站查看
    8. 徐敬一,陈炯,吕竹文,陈小虎,王芳. 电子束预控工艺对HfZrTiTa0.6组织与性能的影响. 兵器材料科学与工程. 2024(06): 107-112 . 百度学术
    9. 熊启林,曾昭泉,安稳,黄西成. 超高应变率下金属热力学塑性变形研究进展. 华中科技大学学报(自然科学版). 2023(01): 67-81 . 百度学术
    10. 魏祥赛,许鼎锋,卢一平,曹志强,王同敏,李廷举. 新型Ni_xTi_(24)Zr_(12)Nb_(10)Ta_(12)Mo_5W_5高熵合金含能结构材料的组织及力学性能. 特种铸造及有色合金. 2023(02): 220-225 . 百度学术
    11. 刘修苹,杨素媛,郭丹. 超音速火焰喷涂CoNiCrAlY涂层的动态力学性能研究. 稀有金属. 2023(04): 475-483 . 百度学术
    12. 侯先苇,张先锋,熊玮,谈梦婷,刘闯,戴兰宏. 活性无序合金冲击的释能特性及在毁伤元中应用研究进展. 爆炸与冲击. 2023(09): 4-42 . 百度学术
    13. 马田,吕永柱,张博,周涛. TiZrNbVAl高熵合金弹体侵彻双层钢板可行性研究. 兵器装备工程学报. 2023(11): 23-28 . 百度学术
    14. 刘龙飞,刘炼煌,胡力,杨智程. 表面加工塑性层对金属柱壳剪切带自组织单旋起始的影响. 力学学报. 2022(04): 1051-1062 . 本站查看
    15. 陈海华,张先锋,赵文杰,高志林,刘闯,谈梦婷,熊玮,汪海英,戴兰宏. W_(25)Fe_(25)Ni_(25)Mo_(25)高熵合金高速侵彻细观结构演化特性. 力学学报. 2022(08): 2140-2151 . 本站查看
    16. 鄢阿敏 ,乔禹 ,戴兰宏 . 高熵合金药型罩射流成型与稳定性. 力学学报. 2022(08): 2119-2130 . 本站查看
    17. 闻鹏,陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报. 2022(24): 325-336 . 百度学术
    18. 杨涛,刘龙飞,杨智程,胡力,卢立伟,石献坤. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响. 力学学报. 2021(03): 813-822 . 本站查看
    19. 陈海华,张先锋,刘闯,林琨富,熊玮,谈梦婷. 高熵合金冲击变形行为研究进展. 爆炸与冲击. 2021(04): 30-53 . 百度学术
    20. 黄文军,乔珺威,陈顺华,王雪姣,吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报. 2021(10): 235-247 . 百度学术
    21. 侯先苇,熊玮,陈海华,张先锋,汪海英,戴兰宏. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报. 2021(09): 2528-2540 . 本站查看
    22. 林泽华,康俊,周永贵,周承商,闫文敏. 旋锻钨合金的残余应力及动态力学性能. 粉末冶金材料科学与工程. 2021(05): 404-411 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  2259
  • HTML全文浏览量:  594
  • PDF下载量:  499
  • 被引次数: 32
出版历程
  • 收稿日期:  2020-05-18
  • 刊出日期:  2020-10-09

目录

    /

    返回文章
    返回