一点的应力状态可由3个主应力$\sigma_{1}$, $\sigma_{2}$, $\sigma_{3}$来表示, 当规定主应力以压为正时, 沿最大主应力$\sigma_{1}$方向将产生收缩变形, 若中间主应力$\sigma_{2}$和最小主应力$\sigma_{3}$都远小于$\sigma_{1}$, 则沿$\sigma_{2}$和$\sigma_{3}$方向会产生横向扩张变形, 当横向扩张变形达到一定极限时, 将会在平行于$\sigma _{1}$的方向产生张裂破坏. 如何建立这种张裂破坏的强度准则目前尚缺乏研究, 最大拉应变理论(第二强度理论)有时被用来解释张裂破坏, 但最大拉应变理论难以应用于三向受力状态. 本文分别用$\varepsilon_{1}$, $\varepsilon_{2}$表示最大张应变和次大张应变, 则最大拉应变理论认为当$\varepsilon_{1}$达到单向拉伸屈服应变时, 材料将产生破坏. 而本文将根据$\varepsilon_{1}+\varepsilon_{2}$之和达到极限值$\varepsilon_u$来建立张裂破坏准则. 可以证明$\varepsilon_{1} +\varepsilon_{2}$所表示的是$\sigma_{1}$主平面的面积增长率. 当$\sigma_{3}<\sigma_{2} \ll \sigma_{1}$时, 大部分岩石都具有脆性破坏的特点, 所以可将破坏前的岩石视为满足广义胡克定律的线弹性材料, 这样用$\varepsilon_{1}$, $\varepsilon_{2}$表示的强度准则可通过$\sigma_{1}$, $\sigma_{2}$, $\sigma_{3}$来表示. 在这个过程中还可考虑岩石在拉伸和压缩时具有不同弹性参数和强度的特点, 并可通过单向拉伸和单向压缩的破坏状态来确定$\varepsilon_u$. 不管$\sigma_{1}$, $\sigma_{2}$, $\sigma_{3}$是压应力, 还是拉应力, 或者$\sigma_{1}$, $\sigma_{2}$, $\sigma_{3}$中有拉有压的情形, 基于$\varepsilon_{1} +\varepsilon_{2} =\varepsilon_u$都可建立相应的强度准则. 所建立的准则可以反映中间应力$\sigma_{2}$对强度的影响规律, 通过建立的强度准则还可以证明: 静水拉力能引起屈服, 而静水压力不能产生屈服; 压缩破坏能使塑性体积增大, 其结果比Mohr-Coulomb准则更能反映实际情形. 并通过拉压应力状态下的试验数据验证了所建立的强度准则, 所得理论计算结果和已有的试验数据吻合得很好. 通过提出的强度准则和圆盘劈裂的试验结果, 可获得更为可靠的岩石单轴抗拉强度.
2021, 53(6): 1647-1657.
doi: 10.6052/0459-1879-21-026