EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高温气体效应的磁流体流动控制研究进展

罗凯 汪球 李逸翔 李进平 赵伟

罗凯, 汪球, 李逸翔, 李进平, 赵伟. 基于高温气体效应的磁流体流动控制研究进展[J]. 力学学报, 2021, 53(6): 1515-1531. doi: 10.6052/0459-1879-21-067
引用本文: 罗凯, 汪球, 李逸翔, 李进平, 赵伟. 基于高温气体效应的磁流体流动控制研究进展[J]. 力学学报, 2021, 53(6): 1515-1531. doi: 10.6052/0459-1879-21-067
Luo Kai, Wang Qiu, Li Yixiang, Li Jinping, Zhao Wei. RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531. doi: 10.6052/0459-1879-21-067
Citation: Luo Kai, Wang Qiu, Li Yixiang, Li Jinping, Zhao Wei. RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531. doi: 10.6052/0459-1879-21-067

基于高温气体效应的磁流体流动控制研究进展

doi: 10.6052/0459-1879-21-067
基金项目: 1)国家自然科学基金资助项目(12072352)
详细信息
    作者简介:

    2)汪球, 高级工程师, 主要研究方向: 高焓气动物理与应用. E-mail: wangqiu@imech.ac.cn

    通讯作者:

    汪球

  • 中图分类号: O361.3

RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT

  • 摘要:

    高超声速飞行器强激波后高温气体形成具有导电性的等离子体流场,电离气体为磁场应用提供了直接工作环境.磁流体控制技术利用外加磁场影响激波后的离子或电子运动规律,可有效地改善高超声速飞行器气动特性,在飞行器气动力操控和热环境管理等方面均具有广阔的应用前景; 同时,超导材料及电磁技术的发展又重新推动了这一领域的研究热潮.虽然国内外在高超声速磁流体流动控制领域已开展了一些研究工作,但其实验研究依然极具挑战, 且由于实验条件及测量技术等限制,其压力、热流等参数的测量并没有得出较为系统的结论,因此需要对影响脱体激波距离、热流、压力变化的规律及机理进行深入研究; 同时,数值模拟方法和理论分析也亟待可靠的实验数据来对其进行验证.本综述调研和讨论了基于高温真实气体效应的磁流体流动控制技术研究,主要针对磁流体流动控制的试验技术、数值模拟、理论方法以及流动控制的主要研究方向等进行了总结,并对其发展趋势进行了讨论和展望.

     

  • [1] 李益文, 张百灵, 李应红 等. 磁流体动力学在航空工程中的应用与展望. 力学进展, 2017, 47: 201713

    (Li Yiwen, Zhang Bailing, Li Yinghong, et al. Review on the application and prospect of magnetohydrodynamics in aeronautical engineering. Advances in Mechanics, 2017, 47: 201713 (in Chinese))
    [2] Lineberry J, Begg L, Castro J, et al. HVEPS scramjet-driven MHD power demonstration test results. AIAA Paper 2007-3880, 2007
    [3] 李益文, 李应红, 张百灵 等. 超声速气流磁流体加速初步实验研究. 力学学报, 2012, 44(2): 238-244

    (Li Yiwen, Li Yinghong, Zhang Bailing, et al. Preliminary experimental investigation on supersonic flow magnetohydrodynamic (MHD) acceleration. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 238-244 (in Chinese))
    [4] Bush WB. Magnetohydrodynamic-hypersonic flow past a blunt body. Journal of Aerospace Sciences, 1958, 25(11): 685-690
    [5] Resler EL Jr, Sears WR. The prospects for magneto-aerodynamics. Journal of Aerospace Sciences, 1958, 25(4): 235-245
    [6] 郭永怀. 现代空气动力学的问题. 科学通报, 1957, 2(10): 289-295.Doi: 10.1360/csb1957-2-10-289
    [7] Gurijanov EP, Harsha PT. AJAX: new directions in hypersonic technology. AIAA Paper 96-4609 1996
    [8] 张义宁, 谷满仓, 陈宝延 等. 带有磁流体能量旁路系统的驻定爆震发动机. 中国专利: 201010531817. 2010-11-04
    [9] 张义宁, 刘振德. 磁流体-斜爆震冲压发动机概念研究. 推进技术, 2013, 34(1): 140-144

    (Zhang Yining, Liu Zhende. Conceptual research on magnetohydrodynamics-oblique detonation ramjet. Journal of Propulsion Technology, 2013, 34(1): 140-144 (in Chinese))
    [10] Palmer G. Magnetic field effects on the computed flow over a Mars return aerobrake. Journal of Thermophysics and Heat Transfer, 1993, 7(2): 294-301
    [11] 李开. 高超声速流动的磁流体力学控制数值模拟研究. [博士论文]. 长沙: 国防科学技术大学, 2017

    (Li Kai. Mechanism analysis of magnetohydrodynamic heat shield system including high temperature real gas effect. [PhD Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
    [12] Otsu H, Matsuda A, Abe T, et al. Feasibility study on the flight demonstration for a reentry vehicle with the magnetic flow control system. AIAA Paper 2006-3566, 2006
    [13] Anderson JD. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, 1989
    [14] Nagata Y, Yamada K, Abe T, et al. MHD Heat Shield in Argon Arcjet Plasma Flow//Japan-Russia Workshop on Supercomputer Modelling, Instability and Turbulence in Fluid Dynamics, 2015
    [15] 吴其芬, 李桦. 磁流体力学. 长沙: 国防科技大学出版社, 2007

    (Wu Qifen, Li Hua. Magneto-Fluid Mechanics. Changsha: National University of Defense Technology Press, 2007 (in Chinese))
    [16] Rossow VJ. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field. NACA-TR-1358, 1958
    [17] Kakutani T. Axially symmetric stagnation-point flow of an electrically conducting fluid under transverse magnetic field. Journal of the Physical Society of Japan, 1960, 15(4): 688-695
    [18] Romig MF. The influence of electric and magnetic fields on heat transfer to electrically conducting fluids. Advances in Heat Transfer, 1964, 1: 267-354
    [19] Ziemer RW, Bush WB. Magnetic field effects on bow shock stand-off distance. Physical Review Letters, 1958, 1(2): 58-59
    [20] Smith DR, Gildfind DE, Jacobs PA, et al. Magnetohydrodynamic drag measurements in an expansion tunnel with argon test gas. AIAA Journal, 2020, 58(10): 4495-4504
    [21] Smith DR, Gildfind DE, McIntyre TJ, et al. Magnetohydrodynamic drag force measurements in expansion tunnels using an accelerometer-based force balance. Experiments in Fluids, 2019, 60(12): 183
    [22] Murakami T, Okuno Y. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II. Experiment. Journal of Physics D: Applied Physics, 2008, 41(12): 125212
    [23] Bobashev SV, Erofeev A, Lapushkina TA, et al. Air plasma produced by gas discharge in supersonic MHD channel. AIAA Paper 2006-1373, 2006
    [24] Schramm JM, Hannemann K. Study of MHD effects in the high-enthalpy shock tunnel G?ttingen (HEG) using a 30T-Pulsed magnet system. 31st International Symposium on Shock Waves, Nagoya, Japan, 2017
    [25] Murakami T, Okuno Y. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: I. Calculation. Journal of Physics D: Applied Physics, 2008, 41(12): 125211
    [26] Su CB, Li YH, Chen BQ. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow. Chinese Journal of Aeronautics, 2010, 22(1): 22-32
    [27] Takizawa Y, Sato S, Abe T, et al. Electro-magnetic effect on shock layer structure in reentry-related high-enthalpy flow. AIAA Paper 2004-2162, 2004
    [28] Itoh K, Ueda S, Komuro T, et al. Hypervelocity aerothermodynamic and propulsion research using a high enthalpy shock tunnel HIEST. 9th International Space Planes and Hypersonic Systems and Technologies Conference, 1999
    [29] Hornung H, Sturtevant B, Belanger J, et al. Performance data of the new free-piston shock tunnel T5 at GALCIT//International Symposium on Shock Waves, 1992: 603-610
    [30] Zhao W, Jiang ZL, Saito T, et al. Performance of a detonation driven shock tunnel. Shock Waves, 2005, 14: 53-59
    [31] 林贞彬, 郭大华, 竺乃宜 等. JF-10氢氧爆轰驱动激波风洞自由流的测量和诊断. 流体力学实验与测量, 2000, 14(3): 12-17

    (Lin Zhenbin, Guo Dahua, Zhu Naiyi, et al. The measurement and diagnostics in free stream of JF-10 hydrogen oxygen detonation driven shock tunnel. Experiments and Measurements in Fluid Mechanics, 2000, 14(3): 12-17 (in Chinese))
    [32] Jiang ZL, Wu B, Gao YL, et al. Developing the detonation-driven expansion tube for orbital speed experiments. Science China Technological Sciences, 2015, 58(4): 695-700
    [33] 周凯, 苑朝凯, 胡宗民 等. JF-16膨胀管流场分析及升级改造. 航空学报, 2016, 37(11): 3296-3303

    (Zhou Kai, Yuan Chaokai, Hu Zongmin, et al. Flow field analysis of JF-16 expansion tube and its upgrade. Acta Aeronauticaet Astronautica Sinica, 2016, 37(11): 3296-3303 (in Chinese))
    [34] Gildfind DE, Smith D, Lewis SW, et al. Expansion tube magnetohydrodynamic experiments with argon test gas. AIAA Paper 2018-3754, 2018
    [35] Takizawa Y, Sato S, Abe T, et al. Electro-magnetic effect on shock layer structure in reentry-related high-enthalpy flow. AIAA Paper 2004-2162, 2004
    [36] Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially-ionized-argon flows. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283
    [37] Peng T, Jiang F, Sun QQ, et al. Concept design of 100-T pulsed magnet at the Wuhan national high magnetic field center. IEEE Transactions on Applied Superconductivity, 2015, 26(4): 1-4
    [38] Qiu L, Han X, Peng T, et al. Design and experiments of a high field electromagnetic forming system. IEEE Transactions on Applied Superconductivity, 2011, 22(3): 3700504
    [39] Sims JR, Rickel DG, Swenson CA, et al. Assembly, commissioning and operation of the NHMFL 100 Tesla multi-pulse magnet system. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 587-591
    [40] Ziemer RW. Experimental investigation in magneto-aerodynamics. ARS Journal, 1959, 29(9): 642-647
    [41] Tanifuji T, Atsushi M, Katsumi W, et al. Expansion tube experiment of applied magnetic field effect on reentry plasma. AIAA Paper 2008-1113, 2008
    [42] Cristofolini A, Borghi C, Neretti G, et al. MHD Interaction around a blunt body in a hypersonic unseeded air flow: Experimental results and numerical rebuilding. AIAA Paper 2012-5804, 2012
    [43] Kawamura M, Katsurayama H, Otsu H, et al. Magnetic configuration effect on the interaction between the weakly ionized flow and the applied magnetic field//28th International Symposium on Shock Waves, 2012
    [44] Smith DR, Gildfind DE, Mee DJ, et al. Magnetohydrodynamic drag force measurements in an expansion tunnel using a stress wave force balance. Experiments in Fluids, 2020, 61(8): 1-15
    [45] Smith DR, Gildfind DE, James CM, et al. Magnetohydrodynamic drag force measurements in an expansion tube. AIAA Paper 2018-3755, 2018
    [46] Wood GP. The electric drag forces on a satellite in the Earth's upper atmosphere//In Proceedings of the NASA-University Conference on the Science and Technology of Space Exploration, Chicago, 1962, 11: 337
    [47] Levy RH. A simple MHD flow with hall effect. AIAA Journal, 1963, 1(3): 698-699
    [48] Kawamura M, Matsuda A, Katsurayama H, et al. Experimental on drag enhancement for a blunt body with electrodynamic heat shield. Journal of Spacecraft and Rockets, 2009, 46(6): 1171-1177
    [49] Kawamura M, Nagata Y, Katsurayama H, et al. Magnetoaerodynamic force on a magnetized body in a partially ionized flow. Journal of Spacecraft and Rockets, 2013, 50(2): 347-351
    [50] Bobashev SV, Golovachev YP, Kurbatov GA, et al. Experimental and numerical investigation into the supersonic flow of a weakly ionized plasma around a dihedral angle: Magnetohydrodynamic control of the flow pattern and heat fluxes toward the wall. Technical Physics, 2009, 54(1): 33-41
    [51] Chang CF, Kranc SC, Nowak RJ, et al. Theoretical and experimental studies of magneto-aerodynamic drag and shock standoff distance. NASA-CR-70315, 1966
    [52] Nowak RJ, Yuen MC. Heat transfer to a hemispherical body in a supersonic argon plasma. AIAA Journal, 1973, 11(11): 1463-1464
    [53] Wilkinson JB. Magnetohydrodynamic effects on stagnation-point heat transfer from partially ionized nonequilibrium gases in supersonic flow. Engineering Aspects of Magnetohydrodynamics, 1962, 64: 413
    [54] Hooks LE, Lewis RC. Simplified magnetoaerodynamic flow relations for axisymmetric blunt bodies. AIAA Journal, 1967, 5(4): 644-650
    [55] Porter RW, Cambel AB. Hall effect in flight magnetogasdynamics. AIAA Journal, 1967, 5(12): 2208-2213
    [56] Ladyzhenskii MD. Hypersonic flow past a body in magneto-hydrodynamics. Journal of Applied Mathematics and Mechanics, 1959, 23(6): 1427-1443
    [57] Ludford GSS, Murray JD. On the flow of a conducting fluid past a magnetized sphere. Journal of Fluid Mechanics, 1960, 7(4): 516-528
    [58] Lykoudis PS. The Newtonian approximation in magnetic hypersonic stagnation-point flow. Journal of the Aerospace Sciences, 1961, 28(7): 541-546
    [59] Porter RW, Cambel AB. Theoretical aspects of blunt body magnetoaerodynamics. NASA Report N-1-66, 1966
    [60] Poggie J, Gaitonde DV. Magnetic control of flow past a blunt body: Numerical validation and exploration. Physics of Fluids, 2002, 14(5): 1720-1731
    [61] Berton RP. Analytic model of a resistive magnetohydrodynamic shock without Hall effect. Journal of Fluid Mechanics, 2018, 842: 273-322
    [62] Brio M, Wu CC. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. Journal of Computational Physics, 1988, 75(2): 400-422
    [63] Damevin HM, Hoffmann K. Numerical magnetogasdynamics simulations of hypersonic, chemically reacting flows. AIAA Paper 2001-2746, 2001
    [64] Damevin HM, Dietiker JF, Hoffmann K. Hypersonic flow computations with magnetic field. AIAA Paper 2000-451, 2000
    [65] Augustinus J, Harada S, Agarwal RK, et al. Numerical solutions of the eight-wave structure ideal MHD equations by modified Runge-Kutta scheme with TVD. AIAA Paper 1997-2398, 1997
    [66] Harada S, Hoffmann K, Augustinus J, et al. Development of a modified Runge-Kutta scheme with TVD limiters for the ideal 1-D MHD equations. AIAA Paper 1997-2090, 1997
    [67] Han SH, Lee J, Kim KH. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations. AIAA Journal, 2009, 47(4): 970-981
    [68] Zha GC, Shen Y, Wang B. An improved low diffusion E-CUSP upwind scheme. Computers and Fluids, 2011, 48(1): 214-220
    [69] MacCormack R. Non-equilibrium ionized flow simulations within strong electro-magnetic fields. AIAA Paper 2010-225, 2010
    [70] Sávio E. Turbulent thermochemical non-equilibrium reentry flows with magnetic actuation in 2D-eleven species. The Journal of Scientific and Engineering Research, 2018, 5(2): 130-164
    [71] Sávio E, Maciel G. Spectral method applied to thermochemical non-equilibrium reentry flows submitted to a magnetic field in 2D: Five species. The Journal of Scientific and Engineering Research, 2018, 5(5): 431-470
    [72] Maciel DG, Sávio E. Magnetic field applied to thermochemical non-equilibrium reentry flows in 2D--five species. International Journal of Computational Fluid Dynamics, 2015, 29(6-8): 376-399
    [73] 田正雨. 高超声速流动的磁流体力学控制数值模拟研究. [博士论文]. 长沙: 国防科学技术大学博士学位论文, 2008

    (Tian Zhengyu. Numerical investigation for hypersonic flow control by magnetohydrodynamics methods. [PhD Thesis]. Changsha: National University of Defense Technology, 2008 (in Chinese))
    [74] Powell KG. An approximate Riemann solver for magnetohydrodynamics. Upwind and High-resolution Schemes, 1997: 570-583
    [75] Brackbill JU, Barnes DC. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations. Journal of Computational Physics, 1980, 35(3): 426-430
    [76] Cummins SJ, Rudman M. An SPH projection method. Journal of Computational Physics, 1999, 152(2): 584-607
    [77] Evans CR, Hawley JF. Simulation of magnetohydrodynamic flows--A constrained transport method. The Astrophysical Journal, 1988, 332: 659-677
    [78] Dedner A, Kemm F, Kr?ner D, et al. Hyperbolic divergence cleaning for the MHD equations. Journal of Computational Physics, 2002, 175(2): 645-673
    [79] 田正雨, 张康平, 丁国昊 等. MHD数值模拟中清除伪磁场散度方法. 计算物理, 2009, 26(1): 78-86

    (Tian Zhengyu, Zhang Kangping, Ding Guohao, et al. Spurious magnetic field divergence cleaning in magnetohydrodynamic simulation. Chinese Journal of Computational Physics, 2009, 26(1): 78-86 (in Chinese))
    [80] Tóth G. The The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational Physics, 2000, 161(2): 605-652
    [81] Balsara DS, Spicer DS. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. Journal of Computational Physics, 1999, 149(2): 270-292
    [82] Hoffmann K, Damevin HM, Dietiker JF. Numerical simulation of hypersonic magnetohydrodynamic flow//31st Plasmadynamics & Lasers Conference, 2013
    [83] Yoshino T, Kondo S, Fujino T, et al. Numerical analysis for MHD flow control using air-core circular magnet. AIAA Paper 2008-4221, 2008
    [84] Imamura Y, Fujino T. Numerical simulation of magnetohydrodynamic flow control in reentry flight with three-temperature model. AIAA Paper 2018-0166, 2018
    [85] 丁明松, 江涛, 刘庆宗 等. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 176-188

    (Ding Mingsong, Jiang Tao, Liu Qingzong, et al. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 176-188 (in Chinese))
    [86] Otsu H, Abe T, Funaki I. Application of electrodynamic heat shield system to super-orbital reentry vehicles. Japan Society of Aeronautical Space Sciences, 2006, 54(628): 181-188
    [87] Fujino T, Ishikawa M. Numerical simulation of control of plasma flow with magnetic field for thermal protection in earth reentry flight. IEEE Transactions on Plasma Science, 2006, 34(2): 409-419
    [88] Shimosawa Y, Fujino T. Numerical study of magnetohydrodynamic flow control along superorbital reentry trajectories. Journal of Spacecraft and Rockets, 2016, 53(3): 528-537
    [89] Matsushita K. Reentry hypersonic flow control by means of electro magnetic force. [PhD Thesis]. Tokyo: University of Tokyo, 2003
    [90] Wasai K, Makino H, Nagata Y, et al. Electrodynamic control of shock interactions in a 25$^circ$/55$^circ$ double cone model in hypersonic flow. AIAA Paper 2010-257, 2010
    [91] Nagata Y, Yamada K, Abe T. Hypersonic double-cone flow with applied magnetic field. Journal of Spacecraft & Rockets, 2013, 50(5): 981-991
    [92] Kim M, Boyd ID. Effectiveness of a magnetohydrodynamics system for Mars entry. Journal of Spacecraft & Rockets, 2012, 49(6): 1141-1149
    [93] Takahashi T, Shimosawa Y, Masuda K, et al. Numerical study of thermal protection using magnetohydrodynamic flow control in Mars entry flight. AIAA Paper 2015-3365, 2015
    [94] 程邦勤, 孙权, 苏长兵 等. 磁流体流动控制在航空工程中的应用与发展. 空军工程大学学报(自然科学版), 2010, 11(2): 11-15

    (Cheng Bangquan, Sun Qun, Su Changbing, et al. Application and development of magnetohydrodynamics flow control in aeronautic engineering. Journal of Air Force Engineering University (Natural Science Edition), 2010, 11(2): 11-15 (in Chinese))
    [95] 李益文, 王宇天, 庞垒 等. 进气道等离子体/磁流体流动控制研究进展. 力学学报, 2019, 51(2): 311-321

    (Li Yiwen, Wang Yutian, Pang Lei, et al. Research progress of plasma/MHD flow control in inlet. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321 (in Chinese))
    [96] 卜少科, 薛雅心. 高超声速磁流体数值模拟研究. 现代电子技术, 2014, 37(5): 137-139, 142

    (Bu Shaoke, Xue Yaxin. Research on numerical simulation of hypersonic MHD. Modern Electronic Technique, 2014, 37(5): 137-139, 142 (in Chinese))
    [97] 潘勇, 王江峰, 伍贻兆. 非结构网格高超声速MHD流场逆风格式数值模拟. 宇航学报, 2008, 29(1): 104-109

    (Pan Yong, Wang Jiangfeng, Wu Yizhao. Numerical simulation of hypersonic MHD flows using upwind scheme on unstructured grids. Journal of Astronautics, 2008, 29(1): 104-109 (in Chinese))
    [98] 潘勇, 王江峰, 伍贻兆. 非结构网格高超声速化学非平衡MHD流场数值模拟. 航空学报, 2008, 29(4): 834-839

    (Pan Yong, Wang Jiangfeng, Wu Yizhao. Numerical simulation of hypersonic MHD flows with nonequilibrium chemical reactions on unstructured meshes. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 834-839 (in Chinese))
    [99] 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究. [博士论文]. 南京: 南京航空航天大学, 2007

    (Pan Yong. Numerical methods for hypersonic flowfield with magnetic interference. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese))
    [100] 王涛, 李会超, 张曼 等. AUSM系列算法对比研究及背景太阳风初步应用. 空间科学学报, 2015, 35(4): 393-402

    (Wang Tao, Li Huichao, Zhang Man, et al. Comparative study of three Ausm algorithms and simulated application on the solar wind. Chinese Journal of Space Science, 2015, 35(4): 393-402 (in Chinese))
    [101] 许振宇, 李椿萱. 超声速磁流体管道流动的数值模拟. 北京航空航天大学学报, 2005, 31(8): 893-898

    (Xu Zhenyu, Li Chunxuan. Numerical simulation of supersonic MHD channel flows. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(8): 893-898 (in Chinese))
    [102] 黄富来. 磁场中高超声速弱电离气体流动特性研究.[硕士论文]. 南京: 南京航空航天大学, 2008

    (Huang Fulai. Investigation of hypersonic weakly ionized air flow characteristic under magnetic field. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese))
    [103] 胡文瑞. 宇宙磁流体力学. 北京: 科学出版社, 1987

    (Hu Wenrui. Cosmic Magnetohydrodynamics. Beijing: Science Press, 1987 (in Chinese))
    [104] 张康平. 磁流体动力学管道流动数值模拟研究. [硕士论文]. 长沙: 国防科学技术大学, 2007

    (Zhang Kangping. Numerical simulation and study of magnetohydrodynamic channel flow. [Master Thesis]. Changsha: National University of Defense Technology, 2007 (in Chinese))
    [105] 李开, 柳军, 刘伟强. 磁控热防护系统高温流场与电磁场耦合计算方法. 宇航学报, 2017, 38(5): 474-480

    (Li Kai, Liu Jun, Liu Weiqiang. Numerical methods of coupling high temperature flow field with electro magnetic field for magnetohydrodynamic heat shield system. Journal of Astronautics, 2017, 38(5): 474-480 (in Chinese))
    [106] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 物理学报, 2017, 66(5): 188-199

    (Li Kai, Liu Jun, Liu Weiqiang. Investigation of Hall effect on the performance of magnetohydrodynamic heat shield system based on variable uniform Hall parameter mode. Acta Physica Sinica, 2017, 66(5): 188-199 (in Chinese))
    [107] 丁明松, 江涛, 刘庆宗 等. 电导率模拟对高超声速MHD控制影响. 航空学报, 2019, 40(11): 55-67

    (Ding Mingsong, Jiang Tao, Liu Qingzong, et al. Impact of simulation of electrical conductivity on hypersonic MHD control. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 55-67 (in Chinese))
    [108] 丁明松, 刘庆宗, 江涛 等. 高温气体效应对高超声速磁流体控制的影响. 航空学报, 2020, 41(2): 82-94

    (Ding Mingsong, Liu Qingzong, Jiang Tao, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 82-94 (in Chinese))
    [109] 欧东斌, 曾徽, 杨国铭 等. 电弧加热高温磁流体发电地面试验研究. 实验流体力学, 2019, 33(5): 42-48

    (Ou Dongbin, Zeng Hui, Yang Guoming, et al. Experimental study of magnetohydrodynamic power generation system in arc heater. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 42-48 (in Chinese))
    [110] 张涛, 杨文将, 李晓东 等. 超导磁体技术在航天推进领域的应用及技术问题. 低温物理学报, 2016, 38(6): 4-11

    (Zhang Tao, Yang Wenjiang, Liu Xiaodong, et al. Application and technical problems of superconducting magnet technology in aerospace propulsion. Chinese Journal of Low Temperature Physics, 2016, 38(6): 4-11 (in Chinese))
    [111] 左光, 齐玢, 欧东斌. 磁流体动力加速风洞技术发展分析. 航天返回与遥感, 2018, 39(6): 4-14

    (Zuo Guang, Qi Fen, Ou Dongbin, et al. Research on development of magneto-hydro-dynamics acceleration wind tunnel technology. Spacecraft Recovery & Remote Sensing, 2018, 39(6): 4-14 (in Chinese))
    [112] 李益文, 李应红, 张百灵 等. 基于激波风洞的超声速磁流体动力技术实验系统. 航空学报, 2011, 32(6): 1015-1024

    (Li Yiwen, Li Yinghong, Zhang Bailing, et al. Supersonic magnetohydrodynamic technical experimental system based on shock tunnel. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1015-1024 (in Chinese))
    [113] 李开, 刘伟强. 高超声速飞行器常规螺线管磁控热防护系统可行性分析. 国防科技大学学报, 2016, 38(2): 25-30

    (Li Kai, Liu Weiqiang. Feasibility analysis of solenoid-based magnetohydrodynamic heat shield system for hypersonic vehicles. Journal of National University of Defense Technology, 2016, 38(2): 25-30 (in Chinese))
    [114] MacCormack R. Evaluation of the low magnetic Reynolds number approximation for aerodynamic flow calculations. AIAA Paper 2005-4780, 2005
    [115] Bisek NJ, Boyd ID, Poggie J. Numerical study of plasma-assisted aerodynamic control for hypersonic vehicles. Journal of Spacecraft and Rockets, 2009, 46(3): 568-576
    [116] Kranc SC, Yuen MC, Cambel AB. Experimental investigation of magnetoaerodynamic flow around blunt bodies. NASA-CR-1393, 1970
    [117] Fujino T, Matsumoto Y, Kasahara J, et al. Numerical studies of magnetohydrodynamic flow control considering real wall electrical conductivity. Journal of Spacecraft and Rockets, 2007, 44(3): 625-632
  • 加载中
计量
  • 文章访问数:  1555
  • HTML全文浏览量:  130
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回