EI、Scopus 收录
中文核心期刊

颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究

刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯

刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. DOI: 10.6052/0459-1879-21-002
引用本文: 刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. DOI: 10.6052/0459-1879-21-002
Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. DOI: 10.6052/0459-1879-21-002
Citation: Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. DOI: 10.6052/0459-1879-21-002
刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. CSTR: 32045.14.0459-1879-21-002
引用本文: 刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. CSTR: 32045.14.0459-1879-21-002
Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. CSTR: 32045.14.0459-1879-21-002
Citation: Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. CSTR: 32045.14.0459-1879-21-002

颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究

基金项目: 1)国家自然科学基金资助项目(11972114);国家自然科学基金资助项目(51904075)
详细信息
    作者简介:

    3)杨明, 讲师, 主要研究方向: 浸入边界法研究. E-mail: yangm@nepu.edu.cn
    2)王明, 博士研究生, 主要研究方向: 多相流及流固耦合振动研究. E-mail: wangm1031@163.com;

    通讯作者:

    王明

    杨明

  • 中图分类号: O359

RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING

  • 摘要: 在采用计算流体力学-离散元耦合方法(computational fluiddynamics-discrete element method, CFD-DEM)进行固液两相耦合分析时, 颗粒计算时间步的选取直接影响到耦合计算精度和计算效率. 为此, 本文选取每个目标颗粒为研究对象, 引入插值函数计算时间步的运动位移, 构建可变空间搜索网格; 通过筛选可能碰撞颗粒建立搜索列表, 采用逆向搜索方式判断碰撞颗粒, 从而提出一种改进的DEM方法(modified discreteelement method, MDEM). 该算法在颗粒群与流体耦合计算中, 颗粒计算初始时间步选取不受颗粒碰撞时间限制, 通过自动调整和修正实现大步长, 由颗粒和流体耦合条件实时更新流体计算时间步, 使颗粒计算时间步选取过小导致计算效率低、选取过大导致颗粒碰撞漏判的问题得以解决, 为颗粒与流体耦合的数值模拟提供了行之有效的计算方法. 通过两个颗粒和多个颗粒的数值模拟, 得到的颗粒间碰撞力、碰撞位置及次数, 与理论计算结果的相对误差均低于2%, 与传统的DEM碰撞搜索算法相比, 在选取的3种计算时间步均不会影响计算精度, 且有较高的计算效率. 通过多个颗粒与流体的耦合数值模拟, 采用传统的CFD-DEM方法, 只有颗粒计算时间步选取10$^{-6}$ s或更小才能得到精确解, 而采用本文方法取10$^{-4}$ s也能够得到精确解, 避免了颗粒碰撞随时间步增大而出现的漏判问题, 且计算耗时降低了16.7%.
    Abstract: When the computational fluid dynamics discrete element method (CFD-DEM) is used for solid-liquid two-phase coupling analysis, the selection of particle calculation time step directly affects the accuracy and efficiency of the coupling calculation. For this reason, each target particle is selected as the research object, and interpolation function is introduced to calculate the motion displacement of the time step, and a variable spatial search grid is constructed. An improved particle collision search algorithm (modified discrete element method, MDEM) was proposed by selecting possible collision particles to build a search list and using reverse search Method to judge collision particles. The algorithm in particle group and fluid coupling calculation, the particle counting the initial time step selection particle collision time without limit, realization of automatic adjustment and correction by large step, calculated by the real-time update of fluid particles and fluid coupling conditions, time step, the granular computing time step selection, as a result of low computational efficiency, selection is too large too small to solve the problem of false negatives, particle collision of particles and fluid coupling numerical simulation provides a effective calculation method. Through the numerical simulation of two particles and multiple particles, the relative errors of the collision forces, collision positions and times between particles obtained are all less than 2% compared with the theoretical calculation results. Compared with the traditional DEM collision search algorithm, the three calculation time steps selected do not affect the calculation accuracy, and the calculation efficiency is higher. Through the coupling numerical simulation of multiple particles and fluid, using the traditional CFD-DEM method, the precise solution can be obtained only when the particle calculation time step is 10$^{-6}$ s or smaller, while the precise solution can be obtained by using the proposed method to take 10$^{-4}$ s, which avoids the problem of missed decision caused by particle collision with the increase of time step, and the calculation time is reduced by 16.7%.
  • [1] Saini N, Kleinstreuer C. A new collision model for ellipsoidal particles in shear flow. Journal of Computational Physics, 2019, 376: 1028-1050
    [2] 刘诚, 沈永明. 定床弯道内水沙两相运动的数值模拟. 力学学报, 2009, 41(3): 318-328

    (Liu Cheng, Shen Yongming. Numerical simulation of two-phase movement of water and sand in a fixed bed curve. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 318-328 (in Chinese))

    [3] Ge L, Evans GM, Moreno-Atanasio R. CFD-DEM investigation of the interaction between a particle swarm and a stationary bubble: Particle-bubble collision efficiency. Powder Technology, 2020, 366: 641-652
    [4] Tanaka T, Tsuji M. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. ASME/FED Gas-Solid Flows, 1991, 121: 123-128
    [5] Acmae El Y, Xu S, Wang J. A New method for computing particle collisions in Navier-Stokes flows. Journal of Computational Physics, 2019, 99: 108919
    [6] 刘向军, 石磊, 徐旭常. 稠密气固两相流欧拉-拉格朗日法的研究现状. 计算力学学报, 2007, 24(2): 166-172

    (Liu Xiangjun, Shi Lei, Xu Xuchang. Research status of the Euler-Lagrangian method for dense gas-solid two-phase flow. Chinese Journal Computational Mechanics, 2007, 24(2): 166-172 (in Chinese))

    [7] Chen X, Wang J. A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows. Powder Technology, 2014, 254: 94-102
    [8] GidaGidaspow D. Multiphase Flows and Fluidization. San Diego: Academic Press Inc, 1994
    [9] 傅旭东, 王光谦. 低浓度固液两相流的颗粒相动理学模型. 力学学报(英文版), 2003, 35(6): 650-659

    (Fu Xudong, Wang Guangqian. The particle phase kinetic model of low-concentration solid-liquid two-phase flow. Acta Mechanic Sinica, 2003, 35(6): 650-659 (in Chinese))

    [10] 刘安源, 刘石. 流化床内颗粒碰撞传热的理论研究. 中国电机工程学报, 2003, 23(3): 161-165

    (Liu Anyuan, Liu Shi. Theoretical study on collision and heat transfer of particles in a fluidized bed. Proceedings of the CSEE, 2003, 23(3): 161-165 (in Chinese))

    [11] 刘向军, 徐旭常. 循环流化床内稠密气固两相流动的数值模拟. 中国电机工程学报, 2003, 23(5): 162-166

    (Liu Xiangjun, Xu Xuchang. Numerical simulation of dense gas-solid two-phase flow in circulating fluidized bed. Proceedings of the CSEE, 2003, 23(5): 162-166 (in Chinese))

    [12] 孙平, 樊建人, 夏振海 等. 计及颗粒间碰撞的湍流气固两相流模型及验证. 自然科学进展, 1998, 5(8): 572-580

    (Sun Ping, Fang Jianren, Xia Zhenhai, et al. Model and verification of turbulent gas-solid two-phase flow considering collisions between particles. Progress in Natural Science, 1998, 5(8): 572-580 (in Chinese))

    [13] Hockney RW, Eastwood JW. Computer simulation using particles. Institute of Physics, 1988, 76: 249-256
    [14] Baraff D. Interactive simulation of solid rigid bodies. IEEE Computer Graphics & Applications, 1995, 15(3): 63-75
    [15] Schaefer BC, Quigley SF, Chan AHC. Acceleration of the discrete element method (DEM) on a reconfigurable co-processor. Computers & Structures, 2004, 82(21): 1707-1718
    [16] Allen M, Tildesley D. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987
    [17] Vemuri BC, Chen L, Waltin O, et al. Efficient and accurate collision detection for granular flow simulation. Graphical Models & Image Processing, 1998, 60(6): 403-422
    [18] Li CF, Feng YT, Owen DRJ. SMB: Collision detection based on temporal coherence. Computer Methods in Applied Mechanics & Engineering, 2006, 195(22): 2252-2269
    [19] Sigurgeirsson H, Stuart A, Wan W. Algorithms for particle-field simulations with collisions. Journal of Computational Physics, 2001, 172: 766-807
    [20] Yao LM, Xiao ZM, Liu JB, et al. An optimized CFD-DEM method for fluid-particle coupling dynamics analysis. International Journal of Mechanical ences, 2020, 174: 105503
    [21] Banaei M, Jegers J, van Sint Annaland J. Tracking of particles using TFM in gas-solid fluidized beds. Advanced Powder Technology, 2018, 29(10): 2538-2547
    [22] Sharma K, Mallick SS, Mittal A. A study of energy loss due to particle to particle and wall collisions during fluidized dense-phase pneumatic transport. Powder Technology, 2019, 362: 707-716
    [23] Ariane B, Gregory S. Experimental methods in chemical engineering: Unresolved CFD-DEM. Canadian Journal of Chemical Engineering, 2020, 98(2): 424-440
    [24] Auton TR, Hunt JCR, Prud'Homme M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluids Mech, 1988, 197: 241-257
    [25] Eskin D, Ratulowski J, Akbarzadeh K. Modeling of particle deposition in a vertical turbulent pipe flow at a reduced probability of particle sticking to the wall. Chemical Engineeringence, 2011, 66(20): 4561-4572
    [26] Liu RJ, Xiao R, Ye M, et al. Analysis of particle rotation in fluidized bed by use of discrete particle model. Advanced Powder Technology, 2018, 29(7): 1655-1663
    [27] Thomas PJ. On the influence of the Basset history force on the motion of a particle through a fluid. Physics of Fluids A Fluid Dynamics, 1992, 4(9): 2090-2093
    [28] Cheng J, Dou Y, Zhang N, et al. A new method for predicting erosion damage of suddenly contracted pipe impacted by particle cluster via CFD-DEM. Materials, 2018, 11(10): 1858-1869
    [29] Zhang Y. Application and improvement of computational fluid dynamics (CFD) in solid particle erosion modeling. [PhD Thesis]. The University of Tulsa, 2006
    [30] Salmana AD, Gorhamb DA, Szabó M, et al. Spherical particle movement in dilute pneumatic conveying. Powder Technology, 2005, 153: 43-50
    [31] 凡凤仙, 王志强, 刘举 等. 竖直振动管中颗粒毛细效应的离散元模拟. 力学学报, 2019, 51(2): 415-424

    (Fan Fengxian, Wang Zhiqiang, Liu Ju, et al. Discrete element simulation of particle capillary effect in vertical vibrating tube. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424 (in Chinese))

    [32] 李鸿晶, 梅雨辰, 任永亮. 一种结构动力时程分析的积分求微方法. 力学学报, 2019, 51(5): 1507-1516

    (Li Hongjing, Mei Yuchen, Ren Yongliang. An integral differential method for structural dynamic time history analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1507-1516 (in Chinese))

    [33] 魏新容, 段绍臻, 孙金龙 等. 基于碰撞模型的斜坡滚石颗粒速度预测. 力学学报, 2020, 52(3): 707-715

    (Wei Xinrong, Duan Shaozhen, Sun Jinlong, et al. Particle velocity prediction of slope rolling rock based on impact model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715 (in Chinese))

    [34] 徐芝纶. 弹性力学简明教程. 北京: 高等教育出版社, 2002

    (Xu Zhilun. Concise Course of Elasticity. Beijing: Higher Education Press, 2002 (in Chinese))

    [35] 王帅, 郝振华, 徐鹏飞 等. 粗糙颗粒动理学及稠密气固两相流动的数值模拟. 力学学报, 2012, 44(2): 278-286

    (Wang Shuai, Hao Zhenhua, Xu Pengfei, et al. Coarse particle kinetics and numerical simulation of dense gas-solid two-phase flow. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 278-286 (in Chinese))

    [36] Alobaid F, Baraki N, Epple B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations. Particuology, 2014, 16(5): 41-53
  • 期刊类型引用(10)

    1. 苏培莉,杨述,刘锋. 煤岩体突水通道骨料灌注运移堆积机制试验. 科学技术与工程. 2024(11): 4446-4455 . 百度学术
    2. 苏培莉,杨述,刘锋. 井下动水截流施工骨料堆积生长机制研究. 煤炭科学技术. 2024(05): 209-221 . 百度学术
    3. 王明,刘巨保,王雪飞,孙丹丹,岳欠杯. 硬球加强模型在CFD-DEM耦合计算中的验证与分析. 计算力学学报. 2023(02): 198-207 . 百度学术
    4. 王强,薛生,郑晓亮,张磊,谢晓贤. 基于CFD-DEM耦合的埋地输气管道泄漏声场分析. 振动与冲击. 2023(18): 321-331 . 百度学术
    5. 李东奇,杨志兵,张乐,胡冉,陈益峰. 空气-悬浮液驱替条件下颗粒边壁滞留研究. 力学学报. 2023(11): 2531-2538 . 本站查看
    6. 魏娟,王强,杨国锋,王关,贾智旗,任玉斌. 基于DEM-CFD耦合的气吸式酸枣捡拾装置的优化设计. 干旱地区农业研究. 2022(04): 265-271 . 百度学术
    7. 贾同鹏,王立华,蒋维,秦基伟. 面向流固耦合缩比模型的相似性规律及其验证. 农业装备与车辆工程. 2022(09): 26-30 . 百度学术
    8. 贾同鹏,王立华,邹泉,蒋维,秦基伟,王炯力,赵泽民. 基于CFD-DEM的打叶后烟叶风分运动特性分析与试验. 烟草科技. 2022(06): 89-97 . 百度学术
    9. 高政国,董朋昆,张雅俊,孙卉竹,迪亚. 一种滞弹簧耗能的新型离散元滚动阻力模型研究. 力学学报. 2021(09): 2384-2394 . 本站查看
    10. 王泽坤,刘谋斌. 基于半解析VOF-DEM的激光直接沉积多尺度过程模拟. 力学学报. 2021(12): 3228-3239 . 本站查看

    其他类型引用(12)

计量
  • 文章访问数:  2057
  • HTML全文浏览量:  551
  • PDF下载量:  235
  • 被引次数: 22
出版历程
  • 收稿日期:  2020-12-31
  • 刊出日期:  2021-05-31

目录

    /

    返回文章
    返回