由于载荷,环境以及材料内部因素的作用,结构的性能一般随时间而逐渐退化. 为了评估结构服役期间的状态,常采用随机变量模型来描述结构性能的退化规律. 即,采用含不确定性模型参数的物理模型来逼近结构响应特性. 利用同类型结构的先知数据集信息可确定模型参数的先验分布. 结合结构服役期间的检测信息和贝叶斯原理,对模型参数进行更新,从而提高物理模型的准确性. 本文提出一种混合粒子滤波方法(particle filter-differential evolution adaptive Metropolis,PF-DREAM)用于模型更新,即:在确定参数先验分布时,采用证据理论(Dempster-shafer theory, DST)初始化模型参数;结合差分进化自适应 Metropolis 算法(differential evolution adaptive Metropolis, DREAM)和粒子滤波(particle filter, PF)算法,来计算更新公式中的复杂的高维积分. 相比于传统的 PF 算法,混合 PF-DREAM 方法可以有效提高样本粒子的多样性,解决重采样算法中粒子多样性匮乏的问题,从而得到更加合理的物理模型. 为了证明该方法的有效性,将提出的方法分别应用于电池性能退化和裂纹扩展规律预测. 算例表明采用本文提出的模型参数确定方法,使得物理模型更加合理,性能预测更加准确. 用于更新的数据越多,模型参数的分散性越小. 本文方法应用于高维问题或隐式函数问题时,计算原理和步骤不发生改变,但函数评价次数和计算时间会随之增大.
2018, 50(3): 677-687.
doi: 10.6052/0459-1879-18-014