EI、Scopus 收录
中文核心期刊

考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真

高晨彤, 黎亮, 章定国, 钱震杰

高晨彤, 黎亮, 章定国, 钱震杰. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2018, 50(3): 654-666. DOI: 10.6052/0459-1879-18-011
引用本文: 高晨彤, 黎亮, 章定国, 钱震杰. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2018, 50(3): 654-666. DOI: 10.6052/0459-1879-18-011
Gao Chentong, Li Liang, Zhang Dingguo, Qian Zhenjie. DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 654-666. DOI: 10.6052/0459-1879-18-011
Citation: Gao Chentong, Li Liang, Zhang Dingguo, Qian Zhenjie. DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 654-666. DOI: 10.6052/0459-1879-18-011
高晨彤, 黎亮, 章定国, 钱震杰. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2018, 50(3): 654-666. CSTR: 32045.14.0459-1879-18-011
引用本文: 高晨彤, 黎亮, 章定国, 钱震杰. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真[J]. 力学学报, 2018, 50(3): 654-666. CSTR: 32045.14.0459-1879-18-011
Gao Chentong, Li Liang, Zhang Dingguo, Qian Zhenjie. DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 654-666. CSTR: 32045.14.0459-1879-18-011
Citation: Gao Chentong, Li Liang, Zhang Dingguo, Qian Zhenjie. DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 654-666. CSTR: 32045.14.0459-1879-18-011

考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真

基金项目: 国家自然科学基金(11772158, 11502113, 11602120)和中央高校基本科研业务费专项资金(30917011103)资助项目.
详细信息
    作者简介:

    通讯作者:章定国,教授,主要研究方向:多体系统动力学. E-mail:zhangdg419@mail.njust.edu.cn

    通讯作者:

    章定国

  • 中图分类号: O313;

DYNAMIC MODELING AND SIMULATION OF ROTATING FGM TAPERED BEAMS WITH SHEAR EFFECT

  • 摘要: 本文对一类中心刚体-柔性梁系统在大范围转动下的刚柔耦合动力学问题进行了研究. 柔性梁为功能梯度材料(functionally graded materials, FGM)楔形变截面梁,材料体积分数在梁轴向呈幂律分布变化. 以弧长坐标来描述柔性FGM梁的几何位移关系,分别使用倾角和拉伸应变变量描述柔性梁的横向弯曲和纵向拉伸变形,并计及剪切效应. 采用假设模态法离散变形场,运用第二类拉格朗日方程进行方程推导,得到系统考虑剪切效应的刚柔耦合动力学模型. 基于全新的刚柔耦合动力学建模理论,研究不同轴向材料梯度分布的FGM楔形梁,通过数值仿真计算,分析讨论不同的转速、梯度分布规律以及变截面参数对系统动力学特性的影响. 结果表明,剪切效应对大高跨比的FGM楔形梁的变形影响较为明显,不容忽略;材料梯度分布规律和截面参数的选取均会对旋转FGM楔形梁的动力学响应和频率产生较大影响. 本文提出的考虑剪切效应的倾角刚柔耦合动力学模型是对以往非剪切模型的进一步完善,可应用于工程中的 Timoshenko梁结构的动力学问题求解.
    Abstract: In this paper, the rigid-flexible coupling dynamics of the rigid-flexible beam system under large overall rotating motion is studied. The flexible beam is a functionally graded material (FGM) tapered beam, and its material properties are assumed to vary along the beam axis with a power law relation. The geometrical displacement relationship of the flexible FGM beam is described by the arc coordinate. The transverse bending and longitudinal stretching of the flexible beam are considered by the variables of the slope angle and the stretching strain, respectively, and the shear effect is taken into account. The assumed modes method is used to describe the deformation field, and Lagrange’s equations of the second kind are used to derive the equations to obtain the rigid-flexible coupling dynamic model considering the shear effect. Based on the new rigid-flexible coupling dynamics modeling theory, dynamics of the FGM tapered beams with different axial gradients are studied. The influences of different rotating speeds, gradient distributions and variable cross-section parameters on the dynamic characteristics of the system are analyzed by numerical simulations. The results show that the effect of shear on the deformation of FGM tapered beam with depth-span ratio is obvious. The distribution of the material gradient and the selection of the cross-section parameters will have a great influence on the dynamic responses and frequencies of the rotating FGM tapered beam. The rigid-flexible coupling dynamic model considering the shear effect is a further improvement of the previous non-shear model, which can be applied to solve the dynamic problems of the Timoshenko beam structures.
  • [1] Koizumi M. FGM activities in Japan.Composites Part B,1997,28B:1-4
    [2] 吴胜宝, 章定国, 康新等. 刚体-微梁系统的动力学特性. 机械工程学报, 2010, 46(3): 76-82
    [2] (Wu Shengbao, Zhang Dingguo, Kang Xin. Dynamic properties of hub-microbeam system.Journal of Mechanical Engineering, 2010, 46(3): 76-82 (in Chinese))
    [3] Kane TR,Ryan R,Banerjee AK. Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control and Dynamics,1987,10(2):139-151
    [4] Yoo HH, Ryan RR, Scott RA. Dynamics of flexible beams undergoing overall motions.Journal of Sound & Vibration, 1995, 181(2): 261-278
    [5] Yoo HH, Chung J. Vibration analysis of rotating cantilever beams.Journal of Sound and Vibration, 1998, 212(5): 807-828
    [6] Yan A. Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect.Mechanics Based Design of Structures & Machines, 2006, 34(1): 25-47
    [7] Yang H, Hong JZ, Yu Z. Dynamics modelling of a flexible hub-beam system with a tip mass.Journal of Sound & Vibration, 2003, 266(4): 759-774
    [8] 和兴锁, 邓峰岩, 王睿. 具有大范围运动和非线性变形的空间柔性梁的精确动力学建模. 物理学报, 2010, 59(3): 1428-1436
    [8] (He Xingsuo, Deng Fengyan, Wang Rui. Exact dynamic modeling of a spatial flexible beam with large overall motion and nonlinear deformation.Acta Physica Sinica, 2010, 59(3): 1428-1436 (in Chinese))
    [9] 刘锦阳, 洪嘉振. 柔性体的刚-柔耦合动力学分析. 固体力学学报, 2002, 23(2): 159-166
    [9] (Liu Jinyang, Hong Jiazhen. Rigid-flexible coupling dynamics analysis of flexible body.Journal of Solid Mechanics, 2002, 23(2): 159-166(in Chinese))
    [10] 章定国,余纪邦. 做大范围运动的柔性梁的动力学分析. 振动工程学报,2006,19(4):475-480
    [10] (Zhang Dingguo, Yu Jibang. Dynamical analysis of a flexible cantilever beam with large overall motions.Journal of Vibration Engineering, 2003, 81(32): 2829-2841 (in Chinese))
    [11] Cai GP, Hong JZ, Yang SX. Dynamic analysis of a flexible hub-beam system with tip mass.Mechanics Research Communications, 2005, 32(2): 173-190
    [12] 王新栋, 邓子辰, 王艳等. 基于时间有限元方法的旋转柔性叶片动力学响应分析. 应用数学和力学, 2014, 35(4): 353-363
    [12] (Wang Xindong, Deng Zichen, Wang Yan, et al. Dynamic behavior analysis of rotational flexible blades based on time-domain finite element method.Applied Mathematics and Mechanics, 2014, 35(4): 353-363 (in Chinese))
    [13] Li L, Zhu WD, Zhang DG, et al. A new dynamic model of a planar rotating hub-beam system based on a description using the slope angle and stretch strain of the beam.Journal of Sound & Vibration, 2015, 345: 214-232
    [14] 韩广才, 吴艳红, 王寅超等. 旋转叶片刚柔耦合系统动力学分析. 哈尔滨工程大学学报, 2011, 32(6): 736-741
    [14] (Han Guangcai, Wu Yanhong, Wang Yinchao, et al. Dynamic analysis of a rotating blade with a rigid-flexible coupling pre-twisted angle and variable cross-section.Journal of Harbin Engineering University, 2011, 32(6): 736-741 (in Chinese))
    [15] 陈思佳, 章定国. 中心刚体-变截面梁系统的动力学特性研究. 力学学报, 2011, 43(4): 790-794
    [15] (Chen Sijia, Zhang Dingguo. Dynamics of hub-variable section beam systems.Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 790-794 (in Chinese))
    [16] 黎亮, 章定国, 洪嘉振. 中心刚体-功能梯度材料梁系统的动力学特性. 机械工程学报, 2013, 49(13): 77-84
    [16] (Li Liang, Zhang Dingguo, Hong Jiazhen. Dynamics of hub-functionally graded material beam systems.Journal of Mechanical Engineering, 2013, 49(13): 77-84 (in Chinese))
    [17] Oh SY, Librescu L, Song O. Vibration of turbomachinery rotating blades made-up of functionally graded materials and operating in a high temperature field.Acta Mechanica, 2003, 166(1-4): 69-87
    [18] Yuan J, Pao YH, Chen W. Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section.Acta Mechanica, 2016, 227(9): 1-19
    [19] Zarrinzadeh H, Attarnejad R, Shahba A. Free vibration of rotating axially functionally graded tapered beams.Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 2012, 226(4): 363-379
    [20] Rajasekaran S. Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods.Applied Mathematical Modelling, 2013, 37(6): 4440-4463
    [21] Li L, Zhang D. Dynamic analysis of rotating axially FG tapered beams based on a new rigid-flexible coupled dynamic model using the B-spline method.Composite Structures, 2015, 124: 357-367
    [22] Das D. Free vibration and buckling analyses of geometrically non-linear and shear-deformable FGM beam fixed to the inside of a rotating rim.Composite Structures, 2017, 179(1): 628-645
    [23] 梁波,赵永刚,姚世平.FGM梁考虑纵向振动的动力学分析.甘肃科学学报,2017, 29(5): 1-5
    [23] (Liang Bo, Zhao Yonggang, Yao Shiping. Dynamic analysis of FGM beam considering longitudinal vibration. Journal of Gansu Sciences, 2017, 29(5): 1-5 (in Chinese))
    [24] Li LI, Zhang DG, Guo YB, et al. Dynamics of rigid-flexible coupling FGM beam systems in variable temperature fields.Journal of Vibration Engineering, 2017, 30(1): 9-19
    [25] Frikha A, Hajlaoui A, Wali M, et al. A new higher order C 0, mixed beam element for FGM beams analysis.Composites Part B Engineering, 2016, 106: 181-189
    [26] Paul A, Das D. Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method.Engineering Science & Technology An International Journal, 2016, 19(2): 1003-1017
    [27] Wattanasakulpong N, Bui TQ. Vibration analysis of third-order shear deformable FGM beams with elastic support by chebyshev collocation method.International Journal of Structural Stability & Dynamics, 2017, 18: 1850071
    [28] Hadji L, Daouadji TH, Bedia EA. Dynamic behavior of FGM beam using a new first shear deformation theory.Earthquakes & Structures, 2016, 10(2): 451-461
    [29] 李容容, 王忠民, 姚晓莎. 旋转FGM圆环形截面柔性梁的振动特性. 应用力学学报, 2017, 34(3): 417-423
    [29] (Li Rongrong, Wang Zhongmin, Yao Xiaosha. Vibration characteristics of rotating flexible ring beam made of functionally graded material.Journal of Applied Mechanics, 2017, 34(3): 417-423 (in Chinese))
    [30] 章孝顺, 章定国, 洪嘉振. 考虑曲率纵向变形效应的大变形柔性梁刚柔耦合动力学建模与仿真. 力学学报, 2016, 48(3): 692-701
    [30] (Zhang Xiaoshun, Zhang Dingguo, Hong Jiazhen. Rigid-flexible coupling dynamic modeling and simulation with the longitudinal deformation induced curvature effect for a rotating flexible beam under large deformation.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701 (in Chinese))
    [31] 方建士, 章定国. 旋转薄板的一种高次动力学模型与频率转向. 力学学报, 2016, 48(1): 173-180
    [31] (Fang Jianshi, Zhang Dingguo. A high-order rigid-flexible coupling model and frequency veering of a rotating cantilever thin plate.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 173-180 (in Chinese))
    [32] 范纪华, 章定国. 基于变形场不同离散方法的柔性机器人动力学建模与仿真. 力学学报, 2016, 48(4): 843-856
    [32] (Fan Jihua, Zhang Dingguo. Dynamic modeling and simulation of flexible robots based on different discretization methods.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 843-856 (in Chinese))
  • 期刊类型引用(11)

    1. 陈渊钊,吴文军. 匀速旋转刚环-内接柔性梁系统的共振分析. 振动工程学报. 2022(06): 1321-1328 . 百度学术
    2. 刘星光,唐有绮,周远. 三种典型轴向运动结构的振动特性对比. 力学学报. 2020(02): 522-532 . 本站查看
    3. 麻程柳,杨茉,李峥,陈凯. 通道内柔性体流固耦合对流动和换热的影响. 动力工程学报. 2020(08): 635-640+653 . 百度学术
    4. 孙杰,孙俊,刘付成,朱东方,黄静. 含间隙铰接的柔性航天器刚柔耦合动力学与控制研究. 力学学报. 2020(06): 1569-1580 . 本站查看
    5. 戴婷,戴宏亮,李军剑,贺其. 含孔隙变厚度FG圆板的湿热力学响应. 力学学报. 2019(02): 512-523 . 本站查看
    6. 陈玲,唐有绮. 时变张力作用下轴向运动梁的分岔与混沌. 力学学报. 2019(04): 1180-1188 . 本站查看
    7. 范纪华,章定国,谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报. 2019(05): 1455-1465 . 本站查看
    8. 周远,唐有绮,刘星光. 黏弹性阻尼作用下轴向运动Timoshenko梁振动特性的研究. 力学学报. 2019(06): 1897-1904 . 本站查看
    9. 蒲刚,章定国,黎亮. 考虑尺度效应的夹层楔形多孔梁动力学分析. 力学学报. 2019(06): 1882-1896 . 本站查看
    10. 范纪华,陈立威,王明强,章定国,杜超凡. 旋转中心刚体-FGM梁刚柔热耦合动力学特性研究. 力学学报. 2019(06): 1905-1917 . 本站查看
    11. 吴晓. 利用剪应力公式研究楔形截面梁的弯曲正应力. 工程与试验. 2019(04): 3-4+50 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  1613
  • HTML全文浏览量:  315
  • PDF下载量:  403
  • 被引次数: 20
出版历程
  • 收稿日期:  2018-01-03
  • 刊出日期:  2018-05-17

目录

    /

    返回文章
    返回