EI、Scopus 收录
中文核心期刊

基于临界状态的砂土本构模型研究

CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE

  • 摘要: 砂土孔隙比及所受压力是其力学特性的重要影响因素. 本文基于砂土临界状态线特性分析,采用以e-(p/pa)ξ平面内的线性关系描述其等向压缩线. 通过对比分析两种不同压缩线函数 与临界状态线函数之间的关系提出更适合描述砂土在等向压缩下的参考压缩线,并给出了基于参考压缩线的等向硬化规律. 建议了适用于 描述砂土剪切特性的屈服面函数,并给出利用等向压缩和等p路径确定屈服面形状参数μ的方法. 将不同应力比对应的压缩线作为砂土状态参量参考线,以获取潜在强度Mf与特征状态应力比Mc,进而描述砂土压缩与剪切特性;基于等向压缩与等p路径建立了当前应力比与状态参量参考线之间的相关关系,从而实现了砂土状 态参量参考线由参考压缩线向临界状态线平稳过渡. 建立的砂土本构模型共11个参数,均能够通过常规土工试验或经验获取. 基于模型预测与Toyoura砂的等向压缩、三轴不排水剪切试验及排水剪切试验的对比结果,本文建立的砂土本构模型很好地描述了Toyoura 砂在不同孔隙比和不同压力下的压缩与剪切特性.

     

    Abstract: The mechanical properties of sand are influenced by void ratio and compression pressure. Based on the sand critical state line characteristics, this paper describes the isotropic compression line by means of the linear relation in e-(p/pa)ξ space. A reference compression curve which is more suitable for describing the isotropic compression of sand is proposed by comparing the relationship between two different compression curve functions and critical state line functions, and the isotropic hardening rule based on the reference compression line is given. A yield surface function suitable for describing the mechanical properties of sand is proposed and a method for determining the yield surface shape parameter μ using isotropic compression and equal p paths is given. To get the potential strength Mf and the characteristic state stress ratio Mc, describe the sand compression and shear characteristics, the compression curve corresponding to stress ratio is taken as the reference curve of sand. The correlation between the current stress ratio and the reference curve of state parameter is proposed based on the isotropic compression and constant p path. Consequently, a smooth transition from reference compression curve to critical state line for the reference curve of state parameter is achieved. The established 11 parameters of the sand constitutive model can all be obtained through routine geotechnical tests or experiences. The sand constitutive model established in this paper describes well the compression and shear characteristics of Toyoura sand in different void ratios and pressures based on the model prediction, isotropic compression tests, triaxial drained and undrained tests of Toyoura sand.

     

/

返回文章
返回