传统离散元方法在处理破裂问题时, 采用界面上的准则进行判断, 裂纹只能沿着单元边界扩展. 当物理问题存在宏观或微观裂隙时, 在界面上应用准则具有其合理性; 而裂纹沿着单元边界扩展, 使得裂纹路径受网格影响较大, 扩展方向受到限制. 针对上述情况, 可以基于单元破裂的方式, 构建连续- 非连续单元法, 并应用于岩石裂纹扩展问题的模拟. 该方法在连续计算时, 将单元离散为具有物理意义的弹簧系统, 在局部坐标系下由弹簧特征长度、面积求解单元变形和应力, 通过更新局部坐标系和弹簧特征量, 可进一步计算块体大位移、大转动, 连续问题计算结果与有限元一致, 同时提高了计算效率. 在此基础上, 引入最大拉应力与莫尔—库伦的复合准则, 判断单元破裂状态和破裂方向, 并采用局部块体切割的方式, 在单元内形成初始裂纹. 裂纹两侧相应增加新的计算节点, 同时引入内聚力模型描述裂纹两侧的法向、切向作用与张开度及滑移变形之间的关系. 按此方式, 裂纹尖端处的扩展路径可穿过单元内部和单元边界, 在扩展方向的选取上更为准确. 最后, 通过三点弯曲梁、单切口平板拉伸、双切口试样等典型数值试验, 模拟裂纹在拉伸、压剪等各种应力状态下的扩展问题, 并对岩石单轴压缩试验的破坏过程进行模拟, 分析裂纹形成与应力—应变曲线各阶段之间的对应关系. 结果表明: 连续—非连续单元法通过单元内部破裂的方式, 可以显示模拟裂纹萌生、扩展、贯通直至形成宏观裂缝的过程.
2015, 47(1): 105-118.
doi: 10.6052/0459-1879-14-239