EI、Scopus 收录
中文核心期刊

基于二阶摄动法求解区间参数结构动力响应

李琦, 邱志平, 张旭东

李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088
引用本文: 李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088
Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088
Citation: Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088
李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1): 147-153. CSTR: 32045.14.0459-1879-14-088
引用本文: 李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1): 147-153. CSTR: 32045.14.0459-1879-14-088
Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. CSTR: 32045.14.0459-1879-14-088
Citation: Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. CSTR: 32045.14.0459-1879-14-088

基于二阶摄动法求解区间参数结构动力响应

基金项目: 高等学校学科创新引智计划(B07009), 国家自然科学基金(11372025,11002013),国防基础科研计划基金(A0820132001, JCKY2013601B)和航空科学基金(2012ZA51010)资助项目.
详细信息
    作者简介:

    李琦,在读博士,主要研究方向:不确定结构分析与优化. E-mail: lq12131010@163.com

  • 中图分类号: O327

SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS

Funds: The project was supported by the 111 Project (B07009), the National Natural Science Foundation of China (11372025, 11002013), the Defense Industrial Technology Development Program (A0820132001, JCKY2013601B) and Aeronautical Science Foundation of China (2012ZA51010).
  • 摘要: 在处理区间参数结构动力响应问题时,现有的分析方法大多局限于一阶区间分析方法. 如果参数的不确定量稍大,采用一阶区间分析方法对结构动力响应范围进行估计可能会失效,所以需要考虑二阶区间分析方法.但是采用基于区间运算的二阶区间分析方法得到的结果将会对动力响应范围过分高估. 为了克服以上缺点,首先基于二阶摄动法得到结构动力响应广义函数. 然后通过求解此动力响应函数的最大和最小值,将结构动力响应区间的问题转化为序列低维箱型约束下的二次规划问题. 最后采用DC 算法(di erence of convex functionsalgorithm) 对这些箱型约束下的二次规划问题进行求解. 这样可以在不引入过多计算量的情况下,避免了对动力响应范围的过分估计. 通过数值算例,将该方法和其他区间分析方法进行比较,验证了该方法的有效性与精确性.
    Abstract: When considering the problem of the dynamic responses of structures with interval parameters, previous interval analysis methods are mostly restricted to its first-order. But if the uncertainties of the parameters are fairly large, the response region obtained using the first-order interval analysis method would fail to contain the real region of the dynamic response of uncertain structures. Therefore, the second-order analysis method should be considered. However, the second-order analysis method relating to operations of interval may result in an exorbitantly overestimated dynamic response region, which makes the result useless for practical engineering problems. To circumvent this drawback, firstly the general function of the dynamic response of structures in terms of structural parameters is obtained based on the second-order parameter perturbation method. Then via solving the maximum and minimum of the function, the problem of determining the bounds of the dynamic response of uncertain structures is changed into a series of low dimensional box constrained quadratic problems, and these box constrained quadratic programming problems can be solved using the DC algorithm (difference of convex functions algorithm) effectively. The proposed method can avoid the exorbitant overestimate of the dynamic response region of uncertain structures, while does not introduce much more computational expense. A numerical example is used to illustrate the accuracy and the efficiency of the proposed method when comparing with other methods.
  • Qiu ZP, Wang XJ. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures, 2003, 40: 5423-5439
    邱志平,马力红, 王晓军. 不确定非线性结构动力响应的区间分析方法.力学学报,2006,38(5):645-651 (Qiu Zhiping, Ma Lihong, Wang Xiaojun. Interval analysis for dynamic response of nonlinear structures with uncertainties. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 645-651 (in Chinese))
    Chen SH, Lian HD, Yang XW. Dynamic response analysis for structures with interval parameters. Structural Engineering and Mechanics, 2002, 13(3): 299-312
    Qiu ZP, Wang XJ. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. International Journal of Solids and Structures, 2005, 42 (18-19): 4958-4970
    Qiu ZP, Ni Z. Interval modal superposition method for impulsive response of structures with uncertain-but-bounded external loads. Applied Mathematical Modelling, 2011, 35: 1538-1550
    Chen SH, Wu J. Interval optimization of dynamic response for structures with interval parameters. Computers and Structures, 2004, 82: 1-11
    Chen SH, Song M, Chen YD. Robustness analysis of responses of vibration control structures with uncertain parameters using interval algorithm. Structural Safety, 2007, 29: 94-111
    邱志平,邱薇,王晓军. 复合材料层合梁自由振动的区间分析. 北京航空航天大学学报,2006,32(7):838-842 (Qiu Zhiping, Qiu Wei, Wang Xiaojun. Intervalanalysis for free vibration of composite lam inated beams. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(7): 838-842 (in Chinese))
    Qiu ZP, Ma LH, Wang XJ. Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. Journal of Sound and Vibration, 2009, 319: 531-540
    An LTH, Tao PD. A branch and bound method via d.c.optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. Journal of Global Optimization, 1998, 13: 171-206
    李 杰.随机结构系统.北京:科学出版社,1996 (Li Jie. Stochastic Structural System. Beijing: Science Press, 1996 (in Chinese))
    Liu WK, Belytschko T. A computational method for the determination of the probabilistic distribution of the dynamic response of structures. A Mani-Computer-aided Engineering, ASME PVP, 1985, 98(5): 243-248
    Shi YH, Eberhart RC. A modified particle swarm optimizer. In: in Proc IEEE Congr Evol Comput, 1998. 69-73
    Svanberg K. The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng, 1987, 24: 359-373
    Tao PD, Duality EBS. D.c. (difference of convex functions) optimization: Subgradient methods, In: Trends in Mathematical Optimization. International Series of Numer Math, 1988, 84: 276-294
    Tao PD, An LTH. D.c. optimization algorithm for solving the trust region sub-problem. SIAM Journal on Optimization, 1998. 8(2): 1-30
计量
  • 文章访问数:  1286
  • HTML全文浏览量:  94
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-09-18
  • 刊出日期:  2015-01-17

目录

    /

    返回文章
    返回