EI、Scopus 收录
中文核心期刊

青光眼发病机理--筛板变形研究进展

张婷, 李龙, 宋凡

张婷, 李龙, 宋凡. 青光眼发病机理--筛板变形研究进展[J]. 力学学报, 2019, 51(5): 1273-1284. DOI: 10.6052/0459-1879-18-321
引用本文: 张婷, 李龙, 宋凡. 青光眼发病机理--筛板变形研究进展[J]. 力学学报, 2019, 51(5): 1273-1284. DOI: 10.6052/0459-1879-18-321
Zhang Ting, Li Long, Song Fan. PATHOGENETIC MECHANISMS OF GLAUCOMA------RESEARCH PROCESS ON THE DEFORMATION OF LAMINA CRIBROSA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1273-1284. DOI: 10.6052/0459-1879-18-321
Citation: Zhang Ting, Li Long, Song Fan. PATHOGENETIC MECHANISMS OF GLAUCOMA------RESEARCH PROCESS ON THE DEFORMATION OF LAMINA CRIBROSA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1273-1284. DOI: 10.6052/0459-1879-18-321
张婷, 李龙, 宋凡. 青光眼发病机理--筛板变形研究进展[J]. 力学学报, 2019, 51(5): 1273-1284. CSTR: 32045.14.0459-1879-18-321
引用本文: 张婷, 李龙, 宋凡. 青光眼发病机理--筛板变形研究进展[J]. 力学学报, 2019, 51(5): 1273-1284. CSTR: 32045.14.0459-1879-18-321
Zhang Ting, Li Long, Song Fan. PATHOGENETIC MECHANISMS OF GLAUCOMA------RESEARCH PROCESS ON THE DEFORMATION OF LAMINA CRIBROSA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1273-1284. CSTR: 32045.14.0459-1879-18-321
Citation: Zhang Ting, Li Long, Song Fan. PATHOGENETIC MECHANISMS OF GLAUCOMA------RESEARCH PROCESS ON THE DEFORMATION OF LAMINA CRIBROSA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1273-1284. CSTR: 32045.14.0459-1879-18-321

青光眼发病机理--筛板变形研究进展

基金项目: 1)国家重点研发计划项目(2016YFA0501601);中国科学院战略性先导科技专项(B)类(XDB22040102);国家自然科学基金项目资助.(11472285)
详细信息
    通讯作者:

    宋凡

  • 中图分类号: Q66

PATHOGENETIC MECHANISMS OF GLAUCOMA------RESEARCH PROCESS ON THE DEFORMATION OF LAMINA CRIBROSA

  • 摘要: 青光眼是世界上第一大不可逆致盲眼病.其病变与眼内压直接相关,控制眼内压是目前控制青光眼发展的唯一有效途径,但发病的确切机制尚未明确.现已证实,青光眼的原发部位是巩膜筛板:由筛板前后分别承受的眼内压与颅内压产生的压力差会导致筛板结构与形态发生变化,进而挤压穿过筛板的视觉神经,造成视觉神经损伤,产生不可逆的视觉损失.因此,青光眼的发病机理与筛板的力学特性及其周围的力学环境密切相关.自从筛板被确定为青光眼视神经损害的原发部位,筛板便成为该领域的研究热点.其中,通过建立筛板力学模型,研究眼内压与颅内压作用下筛板的受力变形,进而分析筛板变形对视神经的损伤,有助于揭示青光眼视神经损伤机制及青光眼的发病机理.本文将从相关实验、理论和计算以及临床等方面介绍青光眼发病机理中筛板变形的研究进展以及目前存在的问题.
    Abstract: Glaucoma is the first cause of irreversible blinding eye disease in the world. Glaucomatous optic nerve damage is directly associated with the intraocular pressure, and tight control of intraocular pressure is still the only therapeutic approach available for the treatment of glaucoma, while the pathogenesis of glaucoma remains unknown. It has now been confirmed that the primary site of glaucoma is the lamina cribrosa: the pressure difference between the intraocular pressure and intracranial pressure respectively exerted on the anterior and posterior surfaces of lamina cribrosa can cause the change in the structure and morphology of lamina cribrosa, then the deformation of lamina cribrosa squeezes the optic nerves passing through the lamina cribrosa to make their damages; and finally, the damages produce irreversible visual loss. As a result, the pathogenesis of glaucoma is essentially associated with the mechanical properties of lamina cribrosa and mechanical environment surrounding the lamina cribrosa. Since lamina cribrosa was identified as the primary site of glaucomatous optic nerve damage, it has become the hot spot of glaucomatous optic nerve damage research. As an effective method, we can study the deformation of lamina cribrosa under the effect of intraocular pressure and intracranial pressure by developing mechanical model of lamina cribrosa, and analyze the effect of the deformation of lamina cribrosa on the optic nerve damage. This method has helped us to reveal the mechanism of glaucomatous optic nerve damage and the pathogenesis of glaucoma to some extent. This review will introduce the research progress and the present existing problems on the deformation of lamina cribrosa during glaucoma from the related experimental, theoretical, computational and clinical aspects.
  • [1] Girard MJA, Strouthidis NG, Desjardins A , et al. In vivo optic nerve head biomechanics: Performance testing of a three-dimensional tracking algorithm. Journal of the Royal Society Interface, 2013,10(87):20130459
    [2] Thylefors B, Negrel AD, Pararajasegaram R , et al. Global data on blindness. Bulletin of the World Health Organization, 1995,73(1):115-121
    [3] Quigley HA, Broman AT . The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 2006,90(3):262-267
    [4] 徐亮, 张莉, 夏翠然 等. 北京农村及城市特定人群原发性闭角型青光眼的患病率及其影响因素. 中华眼科杂志, 2005,41(1):8-14
    [4] ( Xu Liang, Zhang Li, Xia Cuiran , et al. The prevalence and its effective factors of primary angle-closure glaucoma in def ined populations of rural and urban in Beijing. Chinese Journal of Ophthalmology, 2005,41(1):8-14 (in Chinese))
    [5] 王小中, 张国梅, 归锦纹 等. 121697人健康体检中青光眼的筛查结果分析. 实用防盲技术, 2008,3(1):10-13
    [5] ( Wang Xiaozhong, Zhang Guomei, Gui Jinwen , et al. Analysis of screening for glaucoma in health check-up for 121697 people. Department of Ophthalmology, 2008,3(1):10-13 (in Chinese))
    [6] Leske MC, Wu SY, Hennis A , et al. Risk factors for incident open-angle glaucoma. Ophthalmology, 2008,115(1):85-93
    [7] Sommer A, Tielsch JM, Katz J , et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans: The Baltimore Eye Survey. Archives of Ophthalmology, 1991,109(8):1090-1095
    [8] Heijl A, Leske MC, Bengtsson B , et al. Reduction of intraocular pressure and glaucoma progression - Results from the early manifest glaucoma trial. Archives of Ophthalmology, 2002,120(10):1268-1279
    [9] Maier PC, Funk J, Schwarzer G , et al. Treatment of ocular hypertension and open angle glaucoma: Meta-analysis of randomised controlled trials. British Medical Journal, 2005,331(7509):134-136B
    [10] Quigley HA, Addicks EM, Green WR , et al. Optic nerve damage in human glaucoma: II. The site of injury and susceptibility to damage. Archives of Ophthalmology, 1981,99(4):635-649
    [11] Sigal IA, Ethier CR . Biomechanics of the optic nerve head. Experimental Eye Research, 2009,88(4):799-807
    [12] Quigley HA . Reappraisal of the mechanisms of glaucomatous optic nerve damage. Eye-Transactions of the Ophthalmological Societies of the United Kingdom, 1987,1:318-322
    [13] Kim YN, Shin JW, Sung KR . Relationship between progressive changes in lamina cribrosa depth and deterioration of visual field loss in glaucomatous eyes. Korean Journal of Ophthalmology: KJO, 2018,32(5):470-477
    [14] Voorhees AP, Jan NJ, Sigal IA . Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Acta Biomaterialia, 2017,58:278-290
    [15] Berdahl JP, Allingham RR, Johnson DH . Cerebrospinal fluid pressure is decreased in primary open-angle glaucoma. Ophthalmology, 2008,115(4):763-768
    [16] Quigley HA, Addicks EM . Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Archives of Ophthalmology, 1981,99(1):137-143
    [17] Jonas JB, Berenshtein E, Holbach L . Anatomic relationship between lamina cribrosa, intraocular space,and cerebrospinal fluid space. Investigative Ophthalmology & Visual Science, 2003,44(12):5189-5195
    [18] Causin P, Guidoboni G, Harris A , et al. A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Mathematical Biosciences, 2014,257:33-41
    [19] Quigley HA, Addicks EM, Green WR . Optic nerve damage in human glaucoma: III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Archives of Ophthalmology, 1982,100(1):135-146
    [20] Wang B, Tran H, Smith MA , et al. In-vivo effects of intraocular and intracranial pressures on the lamina cribrosa microstructure. Plos One, 2017,12(11):e0188302
    [21] Johannesson G, Eklund A, Linden C . Intracranial and intraocular pressure at the lamina cribrosa: Gradient effects. Current Neurology and Neuroscience Reports, 2018,18(4):25
    [22] Quigley HA , Pathophysiology of optic nerve in glaucoma//McAllister JA, Wilson RP, Eds. Glaucoma. Butterworths, London, 1986, 30-53
    [23] Tian H, Du R, Song F . A modified relation between the intraocular and intracranial pressures. Theoretical and Applied Mechanics Letters, 2016,6(3):148-150
    [24] Spentzas T, Henricksen J, Patters AB , et al. Correlation of intraocular pressure with intracranial pressure in children with severe head injuries. Pediatric Critical Care Medicine, 2010,11(4):593-598
    [25] Lashutka MK, Chandra A, Murray HN , et al. The relationship of intraocular pressure to intracranial pressure. Annals of Emergency Medicine, 2004,43(4):585-591
    [26] Sajjadi SA, Harirchian MH, Sheiklibahaei N , et al. The relation between intracranial and intraocular pressures: Study of 50 patients. Annals of Neurology, 2006,59(4):867-870
    [27] Li Z, Yang YX, Lu Y , et al. Intraocular pressure $vs$intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study). BMC Neurology, 2012,12:66
    [28] Yan DB, Coloma FM, Metheetrairut A , et al. Deformation of the lamina cribrosa by elevated intraocular pressure. British Journal of Ophthalmology, 1994,78(8):643-648
    [29] Emery JM, Landis D, Paton D , et al. The lamina cribrosa in normal and glaucomatous human eyes. Transactions American Academy of Ophthalmology and Otolaryngology, 1974,78(2):O290-O297
    [30] Quigley HA, Anderson DR . The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Investigative Ophthalmology, 1976,15(8):606-616
    [31] Minckler DS, Bunt AH, Klock IB . Radioautographic and cytochemical ultrastructural studies of axoplasmic transport in the monkey optic nerve head. Investigative Ophthalmology & Visual Science, 1978,171(1):33-50
    [32] Anderson DR, Hendrick A . Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve. Investigative Ophthalmology, 1974,13(10):771-783
    [33] Maumenee AE . Causes of optic nerve damage in glaucoma: Robert N. Shaffer Lecture. Ophthalmology, 1983,90(7):741-752
    [34] Bellezza AJ, Rintalan CJ, Thompson HW , et al. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Investigative Ophthalmology & Visual Science, 2003,44(2):623-637
    [35] Zeimer RC . The relation between glaucomatous damage and optic nerve head mechanical compliance. Archives of Ophthalmology, 1989,107(8):1232-1234
    [36] Coleman AL, Quigley HA, Vitale S , et al. Displacement of the optic nerve head by acute changes in intraocular pressure in monkey eyes. Ophthalmology, 1991,98(1):35-40
    [37] Levy NS, Crapps EE . Displacement of optic nerve head in response to short-term intraocular pressure elevation in human eyes. Archives of Ophthalmology, 1984,102(4):782-786
    [38] Tezel G, Trinkaus K, Wax MB . Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. British Journal of Ophthalmology, 2004,88(2):251-256
    [39] Radius RL, Gonzales M . Anatomy of the lamina cribrosa in human eyes. Archives of Ophthalmology, 1981,99(12):2159-2162
    [40] Dandona L, Quigley HA, Brown AE , et al. Quantitative regional structure of the normal human lamina cribrosa: A racial comparison. Archives of Ophthalmology, 1990,108(3):393-398
    [41] Jonas JB, Mardin CY, Schlotzerschrehardt U , et al. Morphometry of the human lamina cribrosa surface. Investigative Ophthalmology & Visual Science, 1991,32(2):401-405
    [42] Susanna R . The lamina cribrosa and visual field defects in open-angle glaucoma. Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie, 1983,18(3):124-126
    [43] Miller KM, Quigley HA . Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic Surgery and Lasers, 1987,18(12):882-889
    [44] Miller KM, Quigley HA . The clinical appearance of the lamina cribrosa as a function of the extent of glaucomatous optic nerve damage. Ophthalmology, 1988,95(1):135-138
    [45] Quigley HA, Flower RW, Addicks EM , et al. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Investigative Ophthalmology & Visual Science, 1980,19(4):505-517
    [46] Tian HJ, Li L, Song F . Study on the deformations of the lamina cribrosa during glaucoma. Acta Biomaterialia, 2017,55:340-348
    [47] Shoji T, Kuroda H, Suzuki M , et al. Glaucomatous changes in lamina pores shape within the lamina cribrosa using wide bandwidth, femtosecond mode-locked laser OCT. Plos One, 2017,12(7):17
    [48] Sigal IA, Grimm JL, Jan NJ , et al. Eye-specific IOP-induced displacements and deformations of human lamina cribrosa. Investigative Ophthalmology & Visual Science, 2014,55(1):1-15
    [49] Tran H, Grimm J, Wang B , et al., Mapping in-vivo optic nerve head strains caused by intraocular and intracranial pressures//Larin KV, Sampson DD, Eds. Optical Elastography and Tissue Biomechanics IV,Proceedings of SPIE - The International Society for Optical Engineering, Bellingham, 2017,10067
    [50] Midgett DE, Pease ME, Jefferys JL , et al. The pressure-induced deformation response of the human lamina cribrosa: Analysis of regional variations. Acta Biomaterialia, 2017,53:123-139
    [51] Sigal IA, Flanagan JG, Ethier CR . Factors influencing optic nerve head biomechanics. Investigative Ophthalmology & Visual Science, 2005,46(11):4189-4199
    [52] Szczudlowski K . Glaucoma hypothesis: Application of the law of Laplace. Medical Hypotheses, 1979,5(4):481-485
    [53] Cahane M, Bartov E . Axial length and scleral thickness effect on susceptibility to glaucomatous damage: A theoretical model implementing Laplace's law. Ophthalmic Research, 1992,24(4):280-284
    [54] Dongqi H, Zeqin R . A biomathematical model for pressure-dependent lamina cribrosa behavior. Journal of Biomechanics, 1999,32(5):579-584
    [55] Edwards ME, Good TA . Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation. Current Eye Research, 2001,23(3):215-225
    [56] Jones IL, Warner M, Stevens JD . Mathematical modelling of the elastic properties of retina: A determination of Young's modulus. Eye, 1992,6:556-559
    [57] Woo SLY, Schlegel WA, Kobayashi AS , et al. Nonlinear material properties of intact cornea and sclera. Experimental Eye Research, 1972,14(1):29-39
    [58] Newson T, El-Sheikh A . Mathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures. Journal of Biomechanical Engineering-Transactions of the Asme, 2006,128(4):496-504
    [59] Yan DB, Flanagan JG, Farra T , et al. Study of regional deformation of the optic nerve head using scanning laser tomography. Current Eye Research, 1998,17(9):903-916
    [60] Guidoboni G, Harris A, Cassani S , et al. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: A mathematical model to clarify their relationship and clinical relevance. Investigative Ophthalmology & Visual Science, 2014,55(7):4105-4118
    [61] Guidoboni G, Harris A, Carichino L , et al. Effect of intraocular pressure on the hemodynamics of the central retinal artery: A mathematical model. Mathematical Biosciences and Engineering, 2014,11(3):523-546
    [62] Bellezza AJ, Hart RT, Burgoyne CF . The optic nerve head as a biomechanical structure: Initial finite element modeling. Investigative Ophthalmology & Visual Science, 2000,41(10):2991-3000
    [63] Sigal IA, Bilonick RA, Kagemann L , et al. The Optic Nerve Head as a Robust Biomechanical System. Investigative Ophthalmology & Visual Science, 2012,53(5):2658-2667
    [64] Sigal IA, Flanagan JG, Lathrop KL , et al. Human Lamina Cribrosa Insertion and Age. Investigative Ophthalmology & Visual Science, 2012,53(11):6870-6879
    [65] Sigal IA, Grimm JL . A Few Good Responses: Which mechanical effects of IOP on the ONH to study? Investigative Ophthalmology & Visual Science, 2012,53(7):4270-4278
    [66] Sigal IA, Grimm JL, Schuman JS , et al. A method to estimate biomechanics and mechanical properties of optic nerve head tissues from parameters measurable using optical coherence tomography. IEEE Transactions on Medical Imaging, 2014, 33(5): 1381-1389
    [67] Sigal IA, Flanagan JG, Tertinegg I, et al. Finite element modeling of optic nerve head biomechanics. Investigative Ophthalmology & Visual Science, 2004,45(12):4378-4387
    [68] 祁昕征, 魏超, 杨佳燕 等. 三维有限元模型力学分析可预测视乳头的形状变化. 中国组织工程研究, 2013,17(50):8712-8718
    [68] ( Qi Xinzheng, Wei Chao, Yang Jiayan , et al. Shape variation of optic nerve head by mechanical analysis using three-dimensional finite element model. Chinese Journal of Tissue Engineering Research, 2013,17(50):8712-8718 (in Chinese))
    [69] Yang HL, Downs JC, Sigal IA , et al. Deformation of the normal monkey optic nerve head connective tissue after acute IOP elevation within 3-D histomorphometric reconstructions. Investigative Ophthalmology & Visual Science, 2009,50(12):5785-5799
    [70] Schwaner SA, Kight AM, Perry RN , et al. A methodology for individual-specific modeling of rat optic nerve head biomechanics in glaucoma. Journal of Biomechanical Engineering-Transactions of the ASME, 2018,140(8):084501
    [71] 张秀兰, 李飞 . 人工智能与青光眼:机遇与挑战. 中华实验眼科杂志, 2018,36(4):245-247
    [71] ( Zhang Xiulan, Li Fei . Artificial intelligence and glaucoma: Opportunities and challenges. Chinese Journal of Experimental Ophthalmology, 2018,36(14):245-247 (in Chinese))
    [72] Singh A, Dutta MK , ParthaSarathi M, et al. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Computer Methods and Programs in Biomedicine, 2016,124:108-120
    [73] Li ZX, He YF, Keel S , et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology, 2018,125(8):1199-1206
    [74] Muhammad H, Fuchs TJ, De Cuir N , et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects. Journal of Glaucoma, 2017,26(12):1086-1094
    [75] Niwas SI, Lin WS, Bai XL , et al. Automated anterior segment OCT image analysis for angle closure glaucoma mechanisms classification. Computer Methods and Programs in Biomedicine, 2016,130:65-75
  • 期刊类型引用(11)

    1. 苏日也·艾合买提,易湘龙,李瑶,张莉言,焦丽. 角膜屈光手术中眼压波动对眼后段结构及功能的影响. 国际眼科杂志. 2024(12): 1927-1931 . 百度学术
    2. 张青,张烨,辛晨,毛迎燕,王宁利. 农村人群视网膜血管直径与视盘参数的关系:邯郸眼病研究. 眼科. 2023(03): 233-239 . 百度学术
    3. 张景茜,任璐頔,钱秀清. 慢性高眼压作用下视网膜功能及筛板形态改变. 北京生物医学工程. 2022(05): 447-453 . 百度学术
    4. 李晴,舒静,曾流芝. 同步监测青光眼患者24 h眼压与血压的意义. 眼科学报. 2021(02): 160-166 . 百度学术
    5. 李正义,苏婷婷,陈宝伟,华峰. 不同类型青光眼中巩膜筛板曲率的比较及其意义. 中华眼底病杂志. 2021(06): 437-443 . 百度学术
    6. 陈玢琳,王争,梁亮. BMP4在青光眼中的研究进展. 生命的化学. 2021(10): 2222-2227 . 百度学术
    7. 孟秋君,韩婷羽,周芳. PFCC护理模式在青光眼术后患者中的应用. 齐鲁护理杂志. 2021(22): 116-119 . 百度学术
    8. 杨雪玉. 复方胞二磷胆碱注射液治疗青光眼视神经萎缩的疗效观察. 临床合理用药杂志. 2020(20): 122-123 . 百度学术
    9. 詹国红,黄俊,陆春,唐朝亮. 老年腹腔镜胆囊切除术患者低二氧化碳气腹压联合腹壁悬吊的护理. 护士进修杂志. 2020(15): 1413-1416 . 百度学术
    10. 高建民. 微创玻切联合手术治疗青光眼术后并发恶性青光眼的临床疗效观察. 现代养生. 2020(Z4): 58-60 . 百度学术
    11. 曹宏健,刘志成,钱秀清. 视乳头的结构和力学特性对筛板变形的影响. 中国医学物理学杂志. 2020(10): 1317-1322 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  2595
  • HTML全文浏览量:  467
  • PDF下载量:  533
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-09-28
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回