EI、Scopus 收录
中文核心期刊

非均质材料动力分析的广义多尺度有限元法

卓小翔, 刘辉, 楚锡华, 徐远杰

卓小翔, 刘辉, 楚锡华, 徐远杰. 非均质材料动力分析的广义多尺度有限元法[J]. 力学学报, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211
引用本文: 卓小翔, 刘辉, 楚锡华, 徐远杰. 非均质材料动力分析的广义多尺度有限元法[J]. 力学学报, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211
Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211
Citation: Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211
卓小翔, 刘辉, 楚锡华, 徐远杰. 非均质材料动力分析的广义多尺度有限元法[J]. 力学学报, 2016, 48(2): 378-386. CSTR: 32045.14.0459-1879-15-211
引用本文: 卓小翔, 刘辉, 楚锡华, 徐远杰. 非均质材料动力分析的广义多尺度有限元法[J]. 力学学报, 2016, 48(2): 378-386. CSTR: 32045.14.0459-1879-15-211
Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. CSTR: 32045.14.0459-1879-15-211
Citation: Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. CSTR: 32045.14.0459-1879-15-211

非均质材料动力分析的广义多尺度有限元法

基金项目: 国家自然科学基金(11402178,11472196),博士后基金(2014M552078,2015T80831)和湖北省自然科学基金(2014CFB336)资助项目.
详细信息
    通讯作者:

    楚锡华,副教授,主要研究:颗粒材料力学,计算固体力学.E-mail:chuxh@whu.edu.cn

  • 中图分类号: O302

A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL

  • 摘要: 自然界和工程中的大部分材料都具有多尺度特征,当考察尺度小到一定程度后,都将表现出非均质性.针对非均质材料的动力问题,提出了一种广义多尺度有限元方法,其基本思想是利用静态凝聚法以及罚函数法构造能够反映单元内部材料非均质特性的多尺度位移基函数.与传统扩展多尺度有限元法中的基函数构造方式不同,广义多尺度有限元法的基函数无需通过在子网格域上多次求解椭圆问题得到,而可直接通过矩阵运算获得.其主要步骤如下:利用数值基函数将一个非均质单胞等效为一个宏观单元,进而形成整个结构的等效刚度矩阵,并得到宏观网格的节点位移,最后再次利用数值基函数得到微观尺度上的位移结果.该广义多尺度有限元法是扩展多尺度有限元法的一种新的拓展,可模拟具有更加复杂几何的非均质单胞的力学行为.通过数值算例,模拟了非均质材料的静力问题、广义特征值问题以及瞬态响应问题,计算结果表明:在边界条件一样的情况下,广义多尺度有限元法的计算结果与传统有限元的计算结果保持高度一致.与传统有限元相比,该方法在保证计算精度的同时极大地提高了计算效率.研究结果表明,广义多尺度有限元法能够很好地模拟非均质单胞的力学行为,具有良好的工程应用潜力.
    Abstract: Almost all natural materials, as well as industrial and engineering materials, have multiscale features.This paper presents a generalized multiscale finite element method for dynamic analysis of heterogeneous materials.In this method, multiscale base functions, which can reflect the internal heterogeneity of materials within the coarse-scale element, are constructed by using the static condensation method and penalty function method.And these functions, which are different from those in the traditional extended multiscale finite element method(EMsFEM), are obtained by matrix operations analytically rather than solving elliptic problem many times on the sub-grid domain numerically.The main steps of this proposed method are described as follows.Firstly, a single heterogeneous unit cell will be equivalent into a macroscopic element by virtue of the constructed multiscale base functions.Then, the stiffness matrix of heterogeneous structure can be calculated on the macroscopic scale.Thus, the macroscopic nodal displacements of coarse-scale mesh can be obtained.Finally, the microscopic nodal displacements of sub grids within the unit cell can be calculated by using the numerical base functions once again.This generalized multiscale finite element method is a new expansion of the EMsFEM, which can simulate the mechanical behavior of heterogeneous unit cell with more complex geometric configurations. The static problem, generalized eigenvalue problem and transient response problem of the heterogeneous material are then simulated.It can be found that the calculation results of the generalized multiscale finite element method maintain highly consistent with those from the traditional FEM.Compared with the traditional FEM, the present multiscale method has significantly improved the computational efficiency while ensuring the computational accuracy, which has a good application potential.
  • 1 张洪武,吴敬凯,刘辉等. 扩展的多尺度有限元法基本原理. 计算机辅助工程,2010, 19(2):3-9(Zhang Hongwu, Wu Jingkai, Liu Hui, et al. Basic theory of extended multiscale finite element method. Computer Aided Engineering, 2010, 19(2):3-9(in Chinese))
    2 郑晓霞,郑锡涛,缑林虎. 多尺度方法在复合材料力学分析中的研究进展. 力学进展, 2010, 40(1):41-56(Zheng Xiaoxia, Zheng Xitao, Gou Linhu. The research progress on multiscale method for the mechanical analysis of composites. Advances in Mechanics, 2010, 40(1):41-56(in Chinese))
    3 Babuska I, Osborn E. Generalized finite element methods:their performance and their relation to mixed methods. SIAM J Numer Anal, 1983, 20:510-536
    4 Babuška I, Caloz G, Osborn JE. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis, 1994, 31(4):945-981
    5 Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1):169-189
    6 Hou TY, Wu XH, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation of the American Mathematical Society, 1999, 68(227):913-943
    7 Efendiev Y, Hou TY, Ginting V. Multiscale finite element methods for nonlinear problems and their applications. Communications in Mathematical Sciences, 2004, 2(4):553-589
    8 Efendiev Y, Hou T. Multiscale finite element methods for porous media flows and their applications. Applied Numerical Mathematics, 2007, 57(5):577-596
    9 Efendiev Y, Galvis J, Hou TY. Generalized multiscale finite element methods(GMsFEM). Journal of Computational Physics, 2013, 251(23):116-135
    10 方诗圣, 王建国, 王秀喜. 层次饱和土Biot 固结问题状态空间法. 力学学报, 2003, 35(2):206-212(Fang Shisheng, Wang Jianguo, Wang Xiuxi. The state space method of the Biot consolidation problem for multilayered porous media. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(2):206-212(in Chinese))
    11 Zhang HW, Fu ZD, Wu JK. Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Advances in Water Resources, 2009, 32(2):268-279
    12 Zhang HW, Liu H, Wu JK. A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. International Journal for Numerical Methods in Engineering, 2013, 93(7):714-746
    13 Liu H, Zhang HW. A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Computational Materials Science, 2013, 79:159-173
    14 江守燕, 杜成斌. 一种XFEM 断裂分析的裂尖单元新型改进函数. 力学学报, 2013, 45(1):134-138(Jiang Shouyan, Du Chengbin. A novel enriched function of element containing crack tip for fracture analysis in XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):134-138(in Chinese))
    15 刘辉. 非均质材料动力及非线性分析的多尺度有限元方法研究.[博士论文]. 大连:大连理工大学, 2013(Liu Hui. Multiscale finite element for dynamic and nonlinear analyses of heterogeneous materials.[PhD Thesis]. Dalian:Dalian University of Technology, 2013(in Chinese))
    16 Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1):169-189
    17 Waisman H, Chatzi E, Smyth AW. Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010, 82(3):303-328
    18 王振,余天堂. 模拟三维裂纹问题的多尺度扩展有限元法. 岩土力学,2014, 35(9):2702-2707(Wang Zhen, Yu Tiantang. A multiscale extended finite element method for modeling threedimensional crack problems. Rock and Soil Mechanics, 2014, 35(9):2702-2707(in Chinese))
    19 石路杨,余天堂. 多裂纹扩展的扩展有限元法分析. 岩土力学, 2014, 35(1):263-272(Shi Luyang, Yu Tiantang. Analysis of multiple crack growth using extended finite element method. Rock and Soil Mechanics, 2014, 35(1):263-272(in Chinese))
    20 Berger H, Gabbert U, Köppe H, et al. Finite element and asymptotic homogenization methods applied to smart composite materials. Computational Mechanics, 2003, 33(1):61-67
    21 Babuška I. Homogenization approach in engineering. In:Computing Methods in Applied Sciences and Engineering. Springer Berlin Heidelberg, 1976:137-153
    22 Ming P, Zhang P. Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Mathematics of Computation, 2007, 76(257):153-177
    23 Galvis J, Li G, Shi K. A generalized multiscale finite element method for the Brinkman equation. Journal of Computational and Applied Mathematics, 2015, 280:294-309
    24 Gao K, Fu S, Gibson RL, et al. Generalized multiscale finiteelement method(GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. Journal of Computational Physics, 2015, 295:161-188
    25 Xing YF, Yang Y. An eigenelement method of periodical composite structures. Composite Structures, 2011, 93(2):502-512
    26 Xing YF, Du CY. An improved multiscale eigenelement method of periodical composite structures. Composite Structures, 2014, 118:200-207
    27 Wilson EL. The static condensation algorithm. International Journal for Numerical Methods in Engineering, 1974, 8(1):198-203
    28 Coello CAC. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art. Computer Methods in Applied Mechanics & Engineering, 2002, 191(11-12):1245-1287
    29 Williams TM. Practical methods of optimization:Vol. 2:Constrained optimization. Journal of the Operational Research Society, 1981, 19(7):675-676
    30 Newmark NM. A method of computation for structural dynamics. Proc ASCE, 1959, 85(3):67-94
计量
  • 文章访问数:  1362
  • HTML全文浏览量:  177
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-10-07
  • 刊出日期:  2016-03-17

目录

    /

    返回文章
    返回