1 张洪武,吴敬凯,刘辉等. 扩展的多尺度有限元法基本原理. 计算机辅助工程,2010, 19(2):3-9(Zhang Hongwu, Wu Jingkai, Liu Hui, et al. Basic theory of extended multiscale finite element method. Computer Aided Engineering, 2010, 19(2):3-9(in Chinese))
|
2 郑晓霞,郑锡涛,缑林虎. 多尺度方法在复合材料力学分析中的研究进展. 力学进展, 2010, 40(1):41-56(Zheng Xiaoxia, Zheng Xitao, Gou Linhu. The research progress on multiscale method for the mechanical analysis of composites. Advances in Mechanics, 2010, 40(1):41-56(in Chinese))
|
3 Babuska I, Osborn E. Generalized finite element methods:their performance and their relation to mixed methods. SIAM J Numer Anal, 1983, 20:510-536
|
4 Babuška I, Caloz G, Osborn JE. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis, 1994, 31(4):945-981
|
5 Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1):169-189
|
6 Hou TY, Wu XH, Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Mathematics of Computation of the American Mathematical Society, 1999, 68(227):913-943
|
7 Efendiev Y, Hou TY, Ginting V. Multiscale finite element methods for nonlinear problems and their applications. Communications in Mathematical Sciences, 2004, 2(4):553-589
|
8 Efendiev Y, Hou T. Multiscale finite element methods for porous media flows and their applications. Applied Numerical Mathematics, 2007, 57(5):577-596
|
9 Efendiev Y, Galvis J, Hou TY. Generalized multiscale finite element methods(GMsFEM). Journal of Computational Physics, 2013, 251(23):116-135
|
10 方诗圣, 王建国, 王秀喜. 层次饱和土Biot 固结问题状态空间法. 力学学报, 2003, 35(2):206-212(Fang Shisheng, Wang Jianguo, Wang Xiuxi. The state space method of the Biot consolidation problem for multilayered porous media. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(2):206-212(in Chinese))
|
11 Zhang HW, Fu ZD, Wu JK. Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Advances in Water Resources, 2009, 32(2):268-279
|
12 Zhang HW, Liu H, Wu JK. A uniform multiscale method for 2D static and dynamic analyses of heterogeneous materials. International Journal for Numerical Methods in Engineering, 2013, 93(7):714-746
|
13 Liu H, Zhang HW. A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials. Computational Materials Science, 2013, 79:159-173
|
14 江守燕, 杜成斌. 一种XFEM 断裂分析的裂尖单元新型改进函数. 力学学报, 2013, 45(1):134-138(Jiang Shouyan, Du Chengbin. A novel enriched function of element containing crack tip for fracture analysis in XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1):134-138(in Chinese))
|
15 刘辉. 非均质材料动力及非线性分析的多尺度有限元方法研究.[博士论文]. 大连:大连理工大学, 2013(Liu Hui. Multiscale finite element for dynamic and nonlinear analyses of heterogeneous materials.[PhD Thesis]. Dalian:Dalian University of Technology, 2013(in Chinese))
|
16 Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. Journal of Computational Physics, 1997, 134(1):169-189
|
17 Waisman H, Chatzi E, Smyth AW. Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. International Journal for Numerical Methods in Engineering, 2010, 82(3):303-328
|
18 王振,余天堂. 模拟三维裂纹问题的多尺度扩展有限元法. 岩土力学,2014, 35(9):2702-2707(Wang Zhen, Yu Tiantang. A multiscale extended finite element method for modeling threedimensional crack problems. Rock and Soil Mechanics, 2014, 35(9):2702-2707(in Chinese))
|
19 石路杨,余天堂. 多裂纹扩展的扩展有限元法分析. 岩土力学, 2014, 35(1):263-272(Shi Luyang, Yu Tiantang. Analysis of multiple crack growth using extended finite element method. Rock and Soil Mechanics, 2014, 35(1):263-272(in Chinese))
|
20 Berger H, Gabbert U, Köppe H, et al. Finite element and asymptotic homogenization methods applied to smart composite materials. Computational Mechanics, 2003, 33(1):61-67
|
21 Babuška I. Homogenization approach in engineering. In:Computing Methods in Applied Sciences and Engineering. Springer Berlin Heidelberg, 1976:137-153
|
22 Ming P, Zhang P. Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Mathematics of Computation, 2007, 76(257):153-177
|
23 Galvis J, Li G, Shi K. A generalized multiscale finite element method for the Brinkman equation. Journal of Computational and Applied Mathematics, 2015, 280:294-309
|
24 Gao K, Fu S, Gibson RL, et al. Generalized multiscale finiteelement method(GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media. Journal of Computational Physics, 2015, 295:161-188
|
25 Xing YF, Yang Y. An eigenelement method of periodical composite structures. Composite Structures, 2011, 93(2):502-512
|
26 Xing YF, Du CY. An improved multiscale eigenelement method of periodical composite structures. Composite Structures, 2014, 118:200-207
|
27 Wilson EL. The static condensation algorithm. International Journal for Numerical Methods in Engineering, 1974, 8(1):198-203
|
28 Coello CAC. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:a survey of the state of the art. Computer Methods in Applied Mechanics & Engineering, 2002, 191(11-12):1245-1287
|
29 Williams TM. Practical methods of optimization:Vol. 2:Constrained optimization. Journal of the Operational Research Society, 1981, 19(7):675-676
|
30 Newmark NM. A method of computation for structural dynamics. Proc ASCE, 1959, 85(3):67-94
|