[1] | 秦志英, 李群宏. 一类非光滑映射的边界碰撞分岔. 力学学报, 2013, 45(1): 25-29 | [1] | (Qin Zhiying, Li Qunhong.Border-collision bifurcation in a kind of non-smooth maps. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 25-29 (in Chinese)) | [2] | 高雪, 陈前, 刘先斌. 一类分段光滑隔振系统的非线性动力学设计方法. 力学学报, 2016, 48(1): 192-200 | [2] | (Gao Xue, Chen Qian, Liu Xianbin.Nonlinear dynamics design for piecewise smooth vibration isolation system. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 192-200 (in Chinese)) | [3] | 范新秀, 王琪. 车辆纵向非光滑多体动力学建模与数值算法研究. 力学学报, 2015, 47(2): 301-309 | [3] | (Fan Xinxiu, Wang Qi.Research on modeling and simulation of longitudinal vehicle dynamics based on non-smooth dynamics of multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 301-309 (in Chinese)) | [4] | Leine RI, Van Campen DH, Van De Vrande BL. Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn, 2000, 23: 105-164 | [5] | Kowalczyk P, Bernardo MD.Two-parameter degenerate sliding bifurcations in Filippov systems. Physica D, 2005, 204: 204-229 | [6] | Fuhrmann G.Non-smooth saddle-node bifurcations III: Strange attractors in continuous time. J Differ Equations, 2016, 261: 2109-2140 | [7] | Bernardo MD, Nordmark A, Olivar G.Discontinuity-induced bifurcations of equilibria in piecewise-smooth and impacting dynamical systems. Physica D, 2008, 237: 119-136 | [8] | Xiong YQ.Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters. Nonlinear Anal-Real, 2018, 41: 384-400 | [9] | 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017, 49(3): 565-587 | [9] | (Zhang Shu, Xu Jian.Review on nonlinear dynamics in systems with coupling delays. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587 (in Chinese)) | [10] | Colombo A, Bernardo MD, Hogan SJ, et al.Bifurcations of piecewise smooth flows: Perspectives, methodologies and open problems. Physica D, 2012, 241: 1845-1860 | [11] | 张思进, 周利彪, 陆启韶. 线性碰振系统周期解擦边分岔的一类映射分析方法. 力学学报, 2007, 39(1): 132-136 | [11] | (Zhang Sijin, Zhou Libiao, Lu Qishao.A map method for grazing bifurcation in linear vibro-impact system. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 132-136 (in Chinese)) | [12] | 卓小翔, 刘辉, 楚锡华等. 非均质材料动力分析的广义多尺度有限元法. 力学学报, 2016, 48(2): 378-386 | [12] | (Zhuo Xiaoxiang, Liu Hui, Chu Xihua, et al.A generalized multiscale finite element method for dynamic analysis of heterogeneous material. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386 (in Chinese)) | [13] | Zhao XJ, Sun YP, Li XM, et al.Multiscale transfer entropy: Measuring information transfer on multiple time scales. Commun Nonlinear Sci Numer Simulat, 2018, 62: 202-212 | [14] | Li QQ, Wang YH, Vasilyeva M.Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties. J Comput Appl Math, 2018, 336: 127-146 | [15] | Chinkanjanarot S, Radue MS, Gowtham S, et al.Multiscale thermal modeling of cured cycloaliphatic epoxy/carbon fiber composites. J Appl Polym Sci, 2018, 135(25): 46371 | [16] | Lameu EL, Borges FS, Borges RR, et al.Network and external perturbation induce burst synchronisation in cat cerebral cortex. Commun Nonlinear Sci, 2016, 34: 45-54 | [17] | 张正娣, 毕勤胜.自激作用下洛伦兹振子的簇发现象及其分岔机制. 中国科学: 物理学力学天文学, 2013, 43: 511-517 | [17] | (Zhang Zhengdi, Bi Qinsheng.Bursting phenomenon as well as the bifurcation mechanism of self-excited Lorenz system. Sci Sin-Phys Mech Astron, 2013, 43(4): 511-517 (in Chinese)) | [18] | Bi QS.The mechanism of bursting phenomena in Belousov Zhabo- tinsky (BZ) chemical reaction with multiple time scale. Sci China-Technol Sci, 2010, 53(1): 748-760 | [19] | 李向红, 毕勤胜. 铂族金属氧化过程中的簇发振荡及其诱发机理. 物理学报, 2012, 61: 020504 | [19] | (Li Xianghong, Bi Qinsheng.Bursting oscillations and the bifurcation mechanism in oxidation on platinum group metals. Acta Phys Sin, 2012, 61: 020504 (in Chinese)) | [20] | Chen XK, Li SH, Zhang ZD, et al.Relaxation oscillations induced by an order gap between exciting frequency and natural frequency. Sci China Tech Sci, 2017, 60: 289-298 | [21] | Jensen RV.Synchronization of driven nonlinear oscillators. Am J Phys, 2002, 70: 607-619 | [22] | Peng J, Wang L, Zhao Y, et al.Synchronization and bifurcation in limit cycle oscillators with delayed coupling. Int J Bifurcat Chaos, 2011, 21: 3157-3169 | [23] | Pereda E, De La Cruz DM, Manas S, et al. Topography of EEG complexity in human neonates: Effect of the postmenstrual age and the sleep state. Neurosci Lett, 2006, 394(2): 152-157 | [24] | Naidu DS.Analysis of non-dimensional forms of singular perturbation structures for hypersonic vehicles. Acta Astronaut, 2010, 66(1): 577-586 | [25] | Chumakov GA, Chumakova NA, Lashina EA.Modeling the complex dynamics of heterogeneous catalytic reactions with fast, intermediate,and slow variables. Chem Eng J, 2015, 282: 11-19 | [26] | Tsaneva-Atanasova K, Osinga HM, Riess T, et al.Full system bifurcation analysis of endocrine bursting models. J Theor Biol, 2010,264: 1133-1146 | [27] | Alexandrov DV, Bashkirtseva IA, Ryashko LB.Excitability, mixedmode oscillations and transition to chaos in a stochastic ice ages model. Physica D, 2017, 343(15): 28-37 | [28] | Izhikevich EM.Neural excitability, spiking and bursting. Int J Bifurcat Chaos, 2000, 10: 1171-1266 | [29] | Yue Y, Zhang ZD, Han XJ.Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system. Commun Nonlinear Sci Numer Simulat, 2018, 56: 380-391 | [30] | Bi QS, Chen XK, Juergen K,et al.Nonlinear behaviors as well as the mechanism in a piecewise-linear dynamical system with two time scales. Nonlinear Dyn, 2016, 85: 2233-2245 | [31] | Han XJ, Xia FB, Zhang C, et al.Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dyn, 2017, 88: 2693-2703 | [32] | Bernardo MD, Kowalczyk P, Nordmark A.Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings. Physica D, 2002, 170: 175-205 |
|