Processing math: 100%
EI、Scopus 收录
中文核心期刊
Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362
Citation: Cai Jianchao, Xia Yuxuan, Xu Sai, Tian Haitao. ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. DOI: 10.6052/0459-1879-19-362

ADVANCES IN MULTIPHASE SEEPAGE CHARACTERISTICS OF NATURAL GAS HYDRATE SEDIMENTS

  • Received Date: December 19, 2019
  • Natural gas hydrate, as a kind of clean and environmental-friendly energy, has large reserves and attract great attention in recent years. In the past 20 years, exploration and reserves prediction for natural gas hydrate reservoirs have been widely conducted within mainland and offshore areas in China. In 2017, China Geological Survey carried out the tentative production for natural gas hydrate based on depressurizing seepage theory in Shenhu Area of the South China Sea. In worldwide, the hydrate tentative production are faced with the typical problems like low gas production and sand production. One of the main reasons is that the complex mechnisams of multiphase flow in sediments during development are still unclear. In this paper, we review parallel capillary model and Kozeny particle model which are widely used in seepage analysis during natural gas hydrate development. Then we analyze the multiscale simulation methods for hydrate seepage and briefly describe experimental advances in terms of permeability measuremnts, evolutionary process for physical properties of sedimens during seepage and laboratory production simulation for hydrate production. Afterwards, we summarize the numerical simulation methods for gas production during the exploitation of gas hydrate reservoirs at the field scale. Future works and challenges are proposed for multiphase seepage model, in situ testing of hydrate samples, evolutionary process for structural and physical properties, field scale numerical simulation and horizontal well fracturing technology applications.
  • [1] Waite WF, Santamarina JC, Cortes DD , et al. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 2009, 47(4): RG4003
    [2] Sloan ED . Fundamental principles and applications of natural gas hydrates. Nature, 2003,426(6964):353
    [3] Archer D . Methane hydrate stability and anthropogenic climate change. Biogeosciences, 2007,4(4):521-544
    [4] Chong ZR, Yang SHB, Babu P , et al. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 2016,162:1633-1652
    [5] Collett TS . Energy resource potential of natural gas hydrates. AAPG Bulletin, 2002,86(11):1971-1992
    [6] Makogon YF . Natural gas hydrates - A promising source of energy. Journal of Natural Gas Science and Engineering, 2010,2(1):49-59
    [7] Li XS, Xu CG, Zhang Y , et al. Investigation into gas production from natural gas hydrate: A review. Applied Energy, 2016,172:286-322
    [8] Sloan Jr ED, Koh CA. Clathrate Hydrates of Natural Gases. 3rd ed. Florida: CRC Press, 2007
    [9] Ye Y, Liu C . Natural Gas Hydrates: Experimental Techniques and Their Applications. Heidelberg: Springer Science & Business Media, 2012
    [10] Grover T, Holditch SA, Moridis G . Analysis of reservoir performance of Messoyakha gas hydrate field// The Eighteenth International Offshore and Polar Engineering Conference, Vancouver, Canada, July 6-11, 2008
    [11] Makogon Y, Holditch S, Makogon T . Russian field illustrates gas-hydrate production. Oil & Gas Journal, 2005,103(5):43-47
    [12] Boswell R, Collett TS, Frye M , et al. Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 2012,34(1):4-30
    [13] Yamamoto K, Inada N, Kubo S , et al. A pressure coring operation and on-board analyses of methane hydrate-bearing samples// Offshore Technology Conference, Houston, Texas, May 5-8, 2014
    [14] 吴能友, 张海啟, 杨胜雄 等. 南海神狐海域天然气水合物成藏系统初探. 天然气工业, 2007,27(9):1-6
    [14] ( Wu Nengyou, Zhang Haiqi, Yang Shengxiong , et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu Area, North Slope of South China Sea. Natural Gas Industry, 2007,27(9):1-6 (in Chinese))
    [15] 张洪涛, 张海启, 祝有海 . 中国天然气水合物调查研究现状及其进展. 中国地质, 2007,34(6):953-961
    [15] ( Zhang Hongtao, Zhang Haiqi, Zhu Youhai . Gas hydrate investigation and research in China: Present status and progress. Geology in China, 2007,34(6):953-961 (in Chinese))
    [16] Li J, Ye J, Qin X , et al. The first offshore natural gas hydrate production test in South China Sea. China Geology, 2018,1(1):5-16
    [17] Moridis GJ, Kowalsky MB, Pruess K . Depressurization-induced gas production from class-1 hydrate deposits. SPE Reservoir Evaluation & Engineering, 2007,10(5):458-481
    [18] Wang Y, Li XS, Li G , et al. Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel, 2014,117:688-696
    [19] Eslamimanesh A, Mohammadi AH, Richon D , et al. Application of gas hydrate formation in separation processes: A review of experimental studies. Journal of Chemical Thermodynamics, 2012,46:62-71
    [20] Ohgaki K, Takano K, Sangawa H , et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system. Journal of Chemical Engineering of Japan, 1996,29(3):478-483
    [21] Cui Y, Lu C, Wu M , et al. Review of exploration and production technology of natural gas hydrate. Advances in Geo-Energy Research, 2018,2(1):53-62
    [22] 张旭辉, 鲁晓兵 . 一种新的海洋浅层水合物开采法-机械-热联合法. 力学学报, 2016,48(5):1238-1246
    [22] ( Zhang Xuhui, Lu Xiaobong . A new exploitation method for gas hydrate in shallow stratum: Mechanical-thermal method. Chinese Journal of Theoretical and Applied Mechanics, 2019,48(5):1238-1246 (in Chinese))
    [23] 张旭辉, 鲁晓兵, 李鹏 . 天然气水合物开采方法的研究综述. 中国科学:物理学力学天文学, 2019,49(3):38-59
    [23] ( Zhang Xuhui, Lu Xiaobing, Li Peng . A comprehensive review in natural gas hydrate recovery methods. Scienta Sinica: Physica, Mechanica & Astronomica, 2019,49(3):38-59 (in Chinese))
    [24] 宁伏龙, 蒋国盛, 张凌 等. 影响含天然气水合物地层井壁稳定的关键因素分析. 石油钻探技术, 2008,36(3):59-61
    [24] ( Ning Fulong, Jiang Guosheng, Zhang Ling , et al. Analysis of key factors affecting wellbore stability in gas hydrate formations. Petroleum Drilling and Techniques, 2008,36(3):59-61 (in Chinese))
    [25] 李彦龙, 刘乐乐, 刘昌岭 等. 天然气水合物开采过程中的出砂与防砂问题. 海洋地质前沿, 2016,32(7):36-43
    [25] ( Li Yanlong, Liu Lele, Liu Changling , et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion. Marine Geology Frontiers, 2016,32(7):36-43 (in Chinese))
    [26] 刘乐乐, 张旭辉, 刘昌岭 等. 含水合物沉积物三轴剪切试验与损伤统计分析. 力学学报, 2016,48(3):720-729
    [26] ( Liu Lele, Zhang Xuhui, Liu Changling , et al. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):720-729 (in Chinese))
    [27] 石要红, 张旭辉, 鲁晓兵 等. 南海水合物黏土沉积物力学特性试验模拟研究. 力学学报, 2015,47(3):521-528
    [27] ( Shi Yaohong, Zhang Xuhui, Lu Xiaobing , et al. Experimrental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):521-528 (in Chinese))
    [28] 刘乐乐, 张旭辉, 鲁晓兵 . 天然气水合物地层渗透率研究进展. 地球科学进展, 2012,27(7):733-746
    [28] ( Liu Lele, Zhang Xuhui, Lu Xiaobing . Review on the permeability of hydrate-bearing sediments. Advances in Earth Science, 2012,27(7):733-746 (in Chinese))
    [29] 宋永臣, 黄兴, 刘瑜 等. 含甲烷水合物多孔介质渗透性的实验研究. 热科学与技术, 2010,9(1):51-57
    [29] ( Song Yongchen, Huang Xing, Liu Yu , et al. Experimental study of permeability of porous medium containing methane hydrate. Journal of Thermal Science and Technology, 2010,9(1):51-57 (in Chinese))
    [30] Singh H, Myshakin EM, Seol Y . A nonempirical relative permeability model for hydrate-bearing sediments. SPE Journal, 2019,24(2):547-562
    [31] Daigle H, Cook A, Malinverno A . Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico. Marine and Petroleum Geology, 2015,68:551-564
    [32] Flemings PB, Liu X, Winters WJ . Critical pressure and multiphase flow in Blake Ridge gas hydrates. Geology, 2003,31(12):1057-1060
    [33] Nimblett J, Ruppel C . Permeability evolution during the formation of gas hydrates in marine sediments. Journal of Geophysical Research: Solid Earth, 2003,108(B9):2420
    [34] Priest JA, Druce M, Roberts J , et al. PCATS Triaxial: A new geotechnical apparatus for characterizing pressure cores from the Nankai Trough, Japan. Marine and Petroleum Geology, 2015,66:460-470
    [35] Kleinberg RL, Flaum C, Griffin DD , et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. Journal of Geophysical Research: Solid Earth, 2003,108(B10):2508
    [36] Lamb H. Hydrodynamics. 6th ed. New York: Cambridge University Press, 1993
    [37] Masuda Y . Numerical calculation of gas production performance from reservoirs containing natural gas hydrates //Annual Technical Conference, San Antonio, Texas, 1997
    [38] Masuda Y . Modeling and experimental studies on dissociation of methane gas hydrates in Berea sandstone cores //Proceedings of the third International Gas Hydrate Conference, Salt Lake City, Utah, USA, 1999
    [39] Hearst JR, Nelson PH . Well Logging for Physical Properties. 2nd ed. New York: John Wiley & Sons, 1985
    [40] Spangenberg E . Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. Journal of Geophysical Research: Solid Earth, 2001,106(B4):6535-6548
    [41] Dai S, Seol Y . Water permeability in hydrate-bearing sediments: A pore-scale study. Geophysical Research Letters, 2014,41(12):4176-4184
    [42] Katagiri J, Konno Y, Yoneda J , et al. Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates: Verification of a Kozeny-Carman-based permeability reduction model. Journal of Natural Gas Science and Engineering, 2017,45:537-551
    [43] Moridis G, Apps J, Pruess K , et al. EOSHYDR: A TOUGH2 module for CH4-hydrate release and flow in the subsurface //Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, USA, 1998
    [44] van Genuchten MT . A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980,44(5):892-898
    [45] Parker JC, Lenhard RJ, Kuppusamy T . A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 1987,23(4):618-624
    [46] Delli ML, Grozic JLH . Prediction performance of permeability models in gas-hydrate-bearing sands. SPE Journal, 2013,182(2):274-284
    [47] 刘乐乐, 张准, 宁伏龙 等. 含水合物沉积物渗透率分形模型. 中国科学:物理学力学天文学, 2019,49(3):165-172
    [47] ( Liu Lele, Zhang Zhun, Ning Fulong , et al. A fractal model for the relative permeability prediction of hydrate-bearing sediments. Scienta Sinica: Physica, Mechanica & Astronomica, 2019,49(3):165-172 (in Chinese))
    [48] Daigle H . Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis. Journal of Petroleum Science and Engineering, 2016,146:526-535
    [49] Ning F, Li C, Cai J , et al. Study on the relative permeability of hydrate-bearing sediments by a fractal parallel capillary model //9th International Conference on Gas Hydrates, Denver, Colorado, USA, 2017
    [50] Singh H, Mahabadi N, Myshakin EM , et al. A mechanistic model for relative permeability of gas and water flow in hydrate-bearing porous media with capillarity. Water Resources Research, 2019,55(4):3414-3432
    [51] Liang H, Song Y, Liu Y , et al. Study of the permeability characteristics of porous media with methane hydrate by pore network model. Journal of Natural Gas Chemistry, 2010,19(3):255-260
    [52] Mahabadi N, Jang J . Relative water and gas permeability for gas production from hydrate-bearing sediments. Geochemistry, Geophysics, Geosystems, 2014,15(6):2346-2353
    [53] 车雯, 梁海峰, 孙国庆 等. 天然气水合物沉积层渗流特性的模拟. 化工进展, 2015,34(6):1576-1581
    [53] ( Che Wen, Liang Haifeng, Sun Guoqing , et al. Simulation study on the seepage characteristics of natural gas hydrate sediment. Chemical Industry and Engineering Progress, 2015,34(6):1576-1581 (in Chinese))
    [54] Mahabadi N, Dai S, Seol Y , et al. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochemistry, Geophysics, Geosystems, 2016,17(8):3099-3110
    [55] Wang J, Zhao J, Zhang Y , et al. Analysis of the effect of particle size on permeability in hydrate-bearing porous media using pore network models combined with CT. Fuel, 2016,163:34-40
    [56] Wang J, Zhao J, Yang M , et al. Permeability of laboratory-formed porous media containing methane hydrate: Observations using X-ray computed tomography and simulations with pore network models. Fuel, 2015,145:170-179
    [57] Ai L, Zhao J, Wang J , et al. Analyzing permeability of the irregular porous media containing methane hydrate using pore Network model combined with CT. Energy Procedia, 2017,105:4802-4807
    [58] 喻西崇, 刘瑜, 宋永臣 等. 基于LBM方法的天然气水合物沉积物中多相流动规律研究. 中国石油大学学报 (自然科学版), 2011,35(5):99-103
    [58] ( Yu Xichong, Liu Yu, Song Yongchen , et al. Study of multiphase flow laws in sediments with gas hydrate based on LBM method. Journal of China University of Petroleum (Edition of Natural Science), 2011,35(5):99-103 (in Chinese))
    [59] Kang DH, Yun TS, Kim KY , et al. Effect of hydrate nucleation mechanisms and capillarity on permeability reduction in granular media. Geophysical Research Letters, 2016,43(17):9018-9025
    [60] Hou J, Ji Y, Zhou K , et al. Effect of hydrate on permeability in porous media: Pore-scale micro-simulation. International Journal of Heat and Mass Transfer, 2018,126:416-424
    [61] Chen X, Verma R, Espinoza DN , et al. Pore-scale determination of gas relative permeability in hydrate-bearing sediments using X-ray computed micro-tomography and lattice Boltzmann method. Water Resources Research, 2018,54(1):600-608
    [62] Zhang L, Zhang C, Zhang K , et al. Pore-scale investigation of methane hydrate dissociation using the lattice Boltzmann method. Water Resources Research, 2019,55(11):8422-8444
    [63] Fang B, Ning F, Ou W , et al. The dynamic behavior of gas hydrate dissociation by heating in tight sandy reservoirs: A molecular dynamics simulation study. Fuel, 2019,258:116106
    [64] Yasuoka K, Murakoshi S . Molecular dynamics simulation of dissociation process for methane hydrate. Annals of the New York Academy of Sciences, 2000,912(1):678-684
    [65] Hirai S, Okazaki K, Tabe Y , et al. CO2 clathrate-hydrate formation and its mechanism by molecular dynamics simulation. Energy Conversion Management, 1997,38:S301-S306
    [66] 万丽华, 颜克凤, 李小森 等. 热力学抑制剂作用下甲烷水合物分解过程的分子动力学模拟. 物理化学学报, 2009,25(3):486-494
    [66] ( Wan Lihua, Yan Kefeng, Li Xiaosen , et al. Molecular dynamics simulation of methane hydrate dissociation process in the presence of thermodynamic inhibitor. Acta Physico-Chimica Sinica, 2009,25(3):486-494 (in Chinese))
    [67] Moon C, Taylor PC, Rodger PM . Molecular dynamics study of gas hydrate formation. Journal of the American Chemical Society, 2003,125(16):4706-4707
    [68] Kondori J, Zendehboudi S, Hossain ME . A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective. Journal of Petroleum Science and Engineering, 2017,159:754-772
    [69] Kossel E, Deusner C, Bigalke N , et al. The dependence of water permeability in quartz sand on gas hydrate saturation in the pore space. Journal of Geophysical Research: Solid Earth, 2018,123(2):1235-1251
    [70] Delli ML, Grozic JLH . Experimental determination of permeability of porous media in the presence of gas hydrates. Journal of Petroleum Science and Engineering, 2014,120:1-9
    [71] Johnson A, Patil S, Dandekar A . Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Marine and Petroleum Geology, 2011,28(2):419-426
    [72] Holland M, Schultheiss P . Comparison of methane mass balance and X-ray computed tomographic methods for calculation of gas hydrate content of pressure cores. Marine and Petroleum Geology, 2014,58:168-177
    [73] Holland ME, Schultheiss PJ, Roberts JA . Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India. Marine and Petroleum Geology, 2019,108:407-423
    [74] Oshima M, Suzuki K, Yoneda J , et al. Lithological properties of natural gas hydrate--bearing sediments in pressure-cores recovered from the Krishna-Godavari Basin. Marine and Petroleum Geology, 2019,108:439-470
    [75] Yoneda J, Oshima M, Kida M , et al. Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna--Godavari Basin, offshore India. Marine and Petroleum Geology, 2019,108:524-536
    [76] Minagawa H, Nishikawa Y, Ikeda I , et al. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement. Journal of Geophysical Research: Solid Earth, 2008,113(B7):B07210
    [77] Konno Y, Jin Y, Uchiumi T , et al. Multiple-pressure-tapped core holder combined with X-ray computed tomography scanning for gas-water permeability measurements of methane-hydrate-bearing sediments. Review of Scientific Instruments, 2013,84(6):064501
    [78] Marinakis D, Varotsis N, Perissoratis C . Gas hydrate dissociation affecting the permeability and consolidation behaviour of deep sea host sediment. Journal of Natural Gas Science and Engineering, 2015,23:55-62
    [79] Konno Y, Yoneda J, Egawa K , et al. Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015,66:487-495
    [80] 刘乐乐, 张宏源, 刘昌岭 等. 瞬态压力脉冲法及其在松散含水合物沉积物中的应用. 海洋地质与第四纪地质, 2017,37(5):159-165
    [80] ( Liu Lele, Zhang Hongyuan, Liu Changling , et al. Pressure pulse-decay method and its application to permeability measurement of hydrate-bearing sediments. Marine Geology & Quaternary Geology, 2017,37(5):159-165 (in Chinese))
    [81] 张宏源, 刘乐乐, 刘昌岭 等. 基于瞬态压力脉冲法的含水合物沉积物渗透性实验研究. 实验力学, 2018,33(2):263-271
    [81] ( Zhang Hongyuan, Liu Lele, Liu Changling , et al. Experimental investigation on permeability of hydrate bearing sediments based on pressure pulse method. Journal of Experimental Mechanics, 2018,33(2):263-271 (in Chinese))
    [82] Hyndman RD, Davis EE . A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research: Solid Earth, 1992,97(B5):7025-7041
    [83] Jarrar ZA, Al-Raoush RI, Hannun JA , et al. 3D synchrotron computed tomography study on the influence of fines on gas driven fractures in Sandy Sediments. Geomechanics for Energy and the Environment, 2018 (In press) doi: 10.1016/j.gete.2018.11.001
    [84] Lu C, Xia Y, Sun X , et al. Permeability evolution at various pressure gradients in natural gas hydrate reservoir at the Shenhu Area in the South China Sea. Energies, 2019,12(19):3688
    [85] Kono HO, Narasimhan S, Song F , et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing. Powder Technology, 2002,122(2):239-246
    [86] 李淑霞, 陈月明, 郝永卯 等. 多孔介质中天然气水合物降压开采影响因素实验研究. 中国石油大学学报(自然科学版), 2007,31(4):56-59
    [86] ( Li Shuxia, Chen Yueming, Hao Yongmao , et al. Experimental research on influence factors of natural gas hydrate production by depressurizing in porous media. Journal of China University of Petroleum (Edition of Natural Science), 2007,31(4):56-59 (in Chinese))
    [87] 李淑霞, 李杰, 靳玉蓉 . 不同饱和度的天然气水合物降压分解实验. 化工学报, 2014,65(4):1411-1415
    [87] ( Li Shuxia, Li Jie, Jin Yurong . Depressurizing dissociation of natural gas hydrate with different saturation. Journal of Chemical Industry and Engineering, 2014,65(4):1411-1415 (in Chinese))
    [88] Lee J, Park S, Sung W . An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme. Energy Conversion and Management, 2010,51(12):2510-2515
    [89] Konno Y, Jin Y, Shinjou K , et al. Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment. RSC Advances, 2014,4(93):51666-51675
    [90] Sakamoto Y, Komai T, Kawabe Y , et al. Gas hydrate extraction from marine sediments by heat stimulation method //The Fourteenth International Offshore and Polar Engineering Conference, Toulon, France, 2004
    [91] 李淑霞, 李杰, 徐新华 等. 天然气水合物藏注热水开采敏感因素试验研究. 中国石油大学学报(自然科学版), 2014,38(2):99-102
    [91] ( Li Shuxia, Li Jie, Xu Xinhua , et al. Experimental study on influencing factors for hydrate dissociation in a hot brine injection process. Journal of China University of Petroleum (Edition of Natural Science), 2014,38(2):99-102 (in Chinese))
    [92] Wang B, Fan Z, Wang P , et al. Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation. Applied Energy, 2018,227:624-633
    [93] Moridis G . EOSHYDR: A TOUGH2 module for CH4-hydrate release and flow in the subsurface //Methane Hydrates, Chiba, Japan, 1998
    [94] Wilder JW, Moridis GJ, Wilson SJ , et al. An international effort to compare gas hydrate reservoir simulators //Proceedings of 6th International Conference on Gas Hydrates, Vancouver,Canada, 2008
    [95] Zhang K, Moridis G, Wu YS , et al. A domain decomposition approach for large-scale simulations of flow processes in hydrate-bearing geologic media// The 6th International Conference on Gas Hydrates, Vancouver, British Columbia, Canada, July 6-10, 2008
    [96] Moridis GJ . TOUGH+HYDRATE v1. 2 User's manual: A code for the simulation of system behavior in hydrate-bearing geologic media //Mathane Hydrates, Chiba, Japan, 2012
    [97] Reagan MT, Moridis GJ . Large-scale simulation of methane hydrate dissociation along the West Spitsbergen Margin. Geophysical Research Letters, 2009,36(23):L23612
    [98] 李刚, 李小森, 陈琦 等. 南海神狐海域天然气水合物开采数值模拟. 化学学报, 2010,68(11):1083-1092
    [98] ( Li Gang, Li Xiaosen, Chen Qi , et al. Numerical simulation of gas production from gas hydrate zone in Shenhu area, South China Sea. Acta Chimica Sinica, 2010,68(11):1083-1092 (in Chinese))
    [99] 李小森, 陈琦, 李刚 等. 海底水合物矿藏降压开采与甲烷气体扩散过程的数值模拟. 现代地质, 2010,24(3):598-606
    [99] ( Li Xiaosen, Chen Qi, Li Gang , et al. The simulation of hydrate production by depressurization in deep ocean. Geoscience, 2010,24(3):598-606 (in Chinese))
    [100] Reagan MT, Moridis GJ, Johnson JN , et al. Field-scale simulation of production from oceanic gas hydrate deposits. Transport in Porous Media, 2015,108(1):151-169
    [101] 胡立堂, 张可霓, 高童 . 南海神狐海域天然气水合物注热降压开采数值模拟研究. 现代地质, 2011,25(4):675-681
    [101] ( Hu Litang, Zhang Keni, Gao Tong . Numerical study of gas production from gas hydrate zone using heat injection and depressurization in Shenhu Area, the South China Sea. Geoscience, 2011,25(4):675-681 (in Chinese))
    [102] Sun J, Ning F, Zhang L , et al. Numerical simulation on gas production from hydrate reservoir at the 1st offshore test site in the eastern Nankai Trough. Journal of Natural Gas Science and Engineering, 2016,30:64-76
    [103] Sun J, Zhang L, Ning F , et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study. Marine and Petroleum Geology, 2017,86:447-473
    [104] Yu T, Guan G, Abudula A . Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan. Applied Energy, 2019,251:113338
    [105] Masuda Y, Konno Y, Iwama H , et al. Improvement of near wellbore permeability by methanol stimulation in a methane hydrate production well //Offshore Technology Conference, Houston, Texas, USA, 2008
    [106] Kurihara M, Sato A, Ouchi H , et al. SS gas hydrate: Prediction of production test performances in eastern Nankai Trough methane hydrate reservoirs using 3D reservoir model //Offshore Technology Conference, Houston, Texas, USA, 2010
    [107] Konno Y, Oyama H, Nagao J , et al. Numerical analysis of the dissociation experiment of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy & Fuels, 2010,24(12):6353-6358
    [108] White M, McGrail P . Designing a pilot-scale experiment for the production of natural gas hydrates and sequestration of CO2 in class 1 hydrate accumulations. Energy Procedia, 2009,1(1):3099-3106
    [109] Zatsepina O, Pooladi-Darvish M, Hong H . Behavior of gas production from Type III hydrate reservoirs. Journal of Natural Gas Science and Engineering, 2011,3(3):496-504
    [110] Myshakin EM, Gaddipati M, Rose K , et al. Numerical simulations of depressurization-induced gas production from gas hydrate reservoirs at the Walker Ridge 313 site, northern Gulf of Mexico. Marine and Petroleum Geology, 2012,34(1):169-185
    [111] 李淑霞, 武迪迪, 王志强 等. 神狐水合物藏降压开采分解前缘数值模拟研究. 中国科学: 物理学力学天文学, 2019,49(3):116-126
    [111] ( Li Shuxia, Wu Didi, Wang Zhiqiang , et al. Numerical simulation of dissociation front of Shenhu hydrate reservoirs by depressurization. Scientia Sinica: Physica, Mechanica & Astronomica, 2019,49(3):116-126 (in Chinese))
    [112] 沈海超 . 天然气水合物藏降压开采流固耦合数值模拟研究. [博士论文]. 东营:中国石油大学(华东), 2009
    [112] ( Shen Haichao . Fuuid-solid coupling numerical simulation on natural gas production from hydrate reservoirs by depressurization. [PhD Thesis]. Dongying: China University of Petroluem (East China), 2009 (in Chinese))
    [113] 程远方, 沈海超, 赵益忠 等. 多孔介质中天然气水合物降压分解有限元模拟. 中国石油大学学报(自然科学版), 2009,33(3):85-89
    [113] ( Cheng Yuanfang, Shen Haichao, Zhao Yizhong , et al. Numerical simulation with finite element method on natural gas hydrate decomposition by depressurization in porous media. Journal of China University of Petroleum (Edition of Natural Science), 2009,33(3):85-89 (in Chinese))
    [114] 阮徐可, 李小森, 杨明军 等. 天然气水合物二次生成及渗透率变化对降压开采的影响. 石油学报, 2015,36(5):612-619
    [114] ( Ruan Xuke, Li Xiaosen, Yang Mingjun , et al. Influences of gas hydarte reformation and permeability changes on depressurization recovery. Acta Petrolei Sinica, 2015,36(5):612-619 (in Chinese))
    [115] Liu L, Lu X, Zhang X , et al. Numerical simulations for analyzing deformation characteristics of hydrate-bearing sediments during depressurization. Advances in Geo-Energy Research, 2017,1(3):135-147
  • Related Articles

    [1]Luan Hengjie, Ma Xianzhuang, Jiang Yujing, Yu Haiyang, Wang Changsheng, Cheng Xianzhen, Liang Wei. NUMERICAL SIMULATION INVESTIGATION OF SEDIMENT COMPRESSION EFFECTS CAUSED BY DEPRESSURIZATION PRODUCTION OF NATURAL GAS HYDRATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 599-615. DOI: 10.6052/0459-1879-22-465
    [2]Hu Ran, Zhong Hanxian, Chen Yifeng. EXPERIMENTS AND EFFECTIVE PERMEABILITY MODEL FOR MULTIPHASE FLOW IN ROCK FRACTURES WITH VARIABLE APERTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 543-553. DOI: 10.6052/0459-1879-22-500
    [3]Chen Feiguo, Ge Wei. A REVIEW OF SMOOTHED PARTICLE HYDRODYNAMICS FAMILY METHODS FOR MULTIPHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373. DOI: 10.6052/0459-1879-21-270
    [4]Cai Shaobin, Yang Yongfei, Liu Jie. PORE-SCALE SIMULATION OF MULTIPHASE FLOW CONSIDERING THERMO-HYDRO-MECHANICAL COUPLING EFFECT IN POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2225-2234. DOI: 10.6052/0459-1879-21-294
    [5]Li Shuxia, Guo Shangping, Chen Yueming, Zhang Ningtao, Wu Didi. ADVANCES AND RECOMMENDATIONS FOR MULTI-FIELD CHARACTERISTICS AND COUPLING SEEPAGE IN NATURAL GAS HYDRATE DEVELOPMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 828-842. DOI: 10.6052/0459-1879-20-050
    [6]Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
    [7]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [8]Zheng Wu. On the numerical simulation of perturbation's propagation and development in traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 785-791. DOI: 10.6052/0459-1879-2006-6-2005-392
    [9]A PARALELL ANALYSIS METHOD FOR FULL COUPLED MULTIPHACE FLOW 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 276-284. DOI: 10.6052/0459-1879-1999-3-1995-032
    [10]THE CHARACTERISTICS OF LAMINAR SIDEWALL BOUNDARY-LAYER FLOWS IN A DUSTY-GAS SHOCK TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(6): 652-659. DOI: 10.6052/0459-1879-1990-6-1995-996

Catalog

    Article Metrics

    Article views (3925) PDF downloads (998) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return