EI、Scopus 收录
中文核心期刊
Yang Chengpeng, Jia Fei, Wei Jingchao. Theoretical strength prediction of ceramic matrix composites in tough-brittle transition. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-9. DOI: 10.6052/0459-1879-25-138
Citation: Yang Chengpeng, Jia Fei, Wei Jingchao. Theoretical strength prediction of ceramic matrix composites in tough-brittle transition. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-9. DOI: 10.6052/0459-1879-25-138

THEORETICAL STRENGTH PREDICTION OF CERAMIC MATRIX COMPOSITES IN TOUGH-BRITTLE TRANSITION

  • The tough-brittle transition is important for the design and performance evaluation of continuous fiber-reinforced ceramic matrix composites (CMCs). Using a single-fiber cylinder model together with elastic mechanics theory, shear-lag theory, fiber statistical strength theory and the rule of mixture, a trans-scale characterization and prediction model for the tough-brittle transition tensile strength of CMCs is established, taking into account the microscopic damage and failure mechanisms, fiber near-surface stress concentration factor and interfacial debonding energy release rate. The theoretical model is then used in 2D-C/SiC composites for preliminary comparative demonstration. The calculation results show that the mixing-rule strength model can reasonably characterize the tough-brittle transition strength properties of CMCs and accurately predict the interfacial mechanical conditions of the tough-brittle transition of CMCs. The theoretical strength prediction values for 2D-C/SiC composites are in good agreement with the experimental data, which reveals the core mechanism of the tough to brittle transition of CMCs is the fiber near-surface stress concentration effect. In addition, when the influence of fractured fiber clusters on stress concentration is considered, the strength predictions of the model decrease substantially, indicating that the non-uniform interfacial properties and the localized fracture nuclei of fibers breaks due to non-uniform load bearing have a significant weakening effect on the load-bearing properties of CMCs.
  • [1]
    马宇, 张大海, 吴军等. 飞行器陶瓷基复合材料轻量化结构设计研究进展. 航空材料学报, 2024, 44(4): 1-15 (Ma Yu, Zhang Dahai, Wu Jun, et al. Research progress on aircraft lightweight design of ceramic matrix composites. Journal of Aeronautical Materials, 2024, 44(4): 1-15 (in Chinese)

    Ma Yu, Zhang Dahai, Wu Jun, et al. Research progress on aircraft lightweight design of ceramic matrix composites. Journal of Aeronautical Materials, 2024, 44(4): 1-15 (in Chinese)
    [2]
    刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战. 材料工程, 2019, 47(2): 1-10 (Liu Qiaomu, Huang Shunzhou, He Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine. Journal of Materials Engineering, 2019, 47(2): 1-10 (in Chinese)

    Liu Qiaomu, Huang Shunzhou, He Aijie. Application requirements and challenges of CMC-SiC composites on aero-engine. Journal of Materials Engineering, 2019, 47(2): 1-10 (in Chinese)
    [3]
    方光武, 谢浩元, 张华军等. CMC-EBC损伤耦合机理及一体化设计研究进展. 无机材料学报, 2024, 39(6): 647-661 (Fang Guangwu, Xie Haoyuan, Zhang Huajun, et al. Progress of damage coupling mechanism and integrated design method for CMC-EBC. Journal of Inorganic Materials, 2024, 39(6): 647-661 (in Chinese) doi: 10.15541/jim20240004

    Fang Guangwu, Xie Haoyuan, Zhang Huajun, et al. Progress of damage coupling mechanism and integrated design method for CMC-EBC. Journal of Inorganic Materials, 2024, 39(6): 647-661 (in Chinese) doi: 10.15541/jim20240004
    [4]
    李龙彪. 陶瓷基复合材料在航空发动机应用与适航符合性验证研究进展. 复合材料学报, 2025, 42(1): 54-87 (Li Longbiao. Research progress on application and airworthiness compliance validation of ceramic-matrix composites in aeroengines. Acta Materiae Compositae Sinica, 2025, 42(1): 54-87 (in Chinese)

    Li Longbiao. Research progress on application and airworthiness compliance validation of ceramic-matrix composites in aeroengines. Acta Materiae Compositae Sinica, 2025, 42(1): 54-87 (in Chinese)
    [5]
    Curtin WA, Ahn BK, Takeda N. Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites. Acta Materialia, 1998, 46(10): 3409-3420 doi: 10.1016/S1359-6454(98)00041-X
    [6]
    Liao K, Reifsnider KL. A tensile strength model for unidirectional fiber-reinforced brittle matrix composite. International Journal of Fracture, 2000, 106(2): 95-115 doi: 10.1023/A:1007645817753
    [7]
    Xia Z, Curtin WA. Tough-to-brittle transitions in ceramic matrix composites with increasing interfacial shear stress. Acta Materialia, 2000, 48(20): 4879-4892 doi: 10.1016/S1359-6454(00)00291-3
    [8]
    O'Day MP, Curtin WA. Failure of crossply ceramic-matrix composites. Journal of the American Ceramic Society, 2002, 85(6): 1553-1560 doi: 10.1111/j.1151-2916.2002.tb00311.x
    [9]
    杨成鹏, 矫桂琼, 王波. 界面性能对陶瓷基复合材料拉伸强度的影响. 无机材料学报, 2009, 24(5): 919-923 (Yang Chengpeng, Jiao Guiqiong, Wang Bo. Effects of interface properties on tensile strength of ceramic matrix composites. Journal of Inorganic Materials, 2009, 24(5): 919-923 (in Chinese) doi: 10.3724/SP.J.1077.2009.00919

    Yang Chengpeng, Jiao Guiqiong, Wang Bo. Effects of interface properties on tensile strength of ceramic matrix composites. Journal of Inorganic Materials, 2009, 24(5): 919-923 (in Chinese) doi: 10.3724/SP.J.1077.2009.00919
    [10]
    Yang CP, Jiao GQ, Wang B. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites. Acta Mechanica Sinica, 2011, 27(3): 382-388 doi: 10.1007/s10409-011-0438-8
    [11]
    Niu XC, Ma Y, Guo S, et al. Predicting tensile behavior and strength of ceramic matrix composites: A micromechanism-based model incorporating interphase and Coulomb friction. Composites: Part A, 2025, 191: 108748 doi: 10.1016/j.compositesa.2025.108748
    [12]
    李龙彪, 宋迎东, 孙志刚. 单向陶瓷基复合材料单轴拉伸强度研究. 航空动力学报, 2010, 25(10): 2177-2187 (Li Longbiao, Song Yingdong, Sun Zhigang. Study on uniaxial tensile strength of unidirectional ceramic matrix composites. Journal of Aerospace Power, 2010, 25(10): 2177-2187 (in Chinese)

    Li Longbiao, Song Yingdong, Sun Zhigang. Study on uniaxial tensile strength of unidirectional ceramic matrix composites. Journal of Aerospace Power, 2010, 25(10): 2177-2187 (in Chinese)
    [13]
    李龙彪, 宋迎东, 孙志刚. 正交铺设陶瓷基复合材料单轴拉伸行为. 复合材料学报, 2011, 28(1): 178-185 (Li Longbiao, Song Yingdong, Sun Zhigang. Uniaxial tensile behavior of cross-ply ceramic matrix composites. Acta Materiae Compositae Sinica, 2011, 28(1): 178-185 (in Chinese)

    Li Longbiao, Song Yingdong, Sun Zhigang. Uniaxial tensile behavior of cross-ply ceramic matrix composites. Acta Materiae Compositae Sinica, 2011, 28(1): 178-185 (in Chinese)
    [14]
    Zhang S, Gao XG, Han X, et al. Prediction of strength and constitutive response of SiC/SiC composites considering fiber failure. Composites: Part B, 2019, 163: 252-259 doi: 10.1016/j.compositesb.2018.11.044
    [15]
    Lamon J. The ultimate tensile strength of SiC/SiC composites: Multiscale approach. Journal of Composites Science, 2025, 9: 45 doi: 10.3390/jcs9010045
    [16]
    Deng Y, Li WG, Wang R, et al. The temperature dependent fracture models for fiber-reinforced ceramic matrix composites. Composite Structures, 2016, 140: 534-539 doi: 10.1016/j.compstruct.2016.01.020
    [17]
    Jia T, Deng Y, Hao Y, et al. An analytical model for the high temperature fracture strength of SiC fiber reinforced ceramic matrix composites considering oxidation and residual thermal stresses. Composites: Part A, 2023, 173: 107668 doi: 10.1016/j.compositesa.2023.107668
    [18]
    Deng Y, Hao Y, Wang H, et al. Effect of temperature and atmosphere on the fracture toughness and failure mechanisms of two-dimensional plain-woven SiCf/SiC composites: Experiments and modeling. Acta Mechanica Sinica, 2025, 41: 124333 doi: 10.1007/s10409-024-24333-x
    [19]
    Deng Y, Li WG, Zheng SF, et al. Modeling the effect of temperature on first matrix cracking stress and fracture strength of cross-ply fiber reinforced ceramic-matrix composites. Journal of the European Ceramic Society, 2019, 39: 5204-5212 doi: 10.1016/j.jeurceramsoc.2019.08.041
    [20]
    Shao J, Li WG, Deng Y, et al. Theoretical models and influencing factor analysis for the temperature-dependent tensile strength of ceramic fibers and their unidirectional composites. Composite Structures, 2017, 164: 23-31 doi: 10.1016/j.compstruct.2016.12.054
    [21]
    Cao H, Thouless MD. Tensile tests of ceramic-matrix composites: Theory and experiment. Journal of the American Ceramic Society, 1990, 73(7): 2091-2094 doi: 10.1111/j.1151-2916.1990.tb05273.x
    [22]
    Li Q, Chen Y, Chen Y, et al. Effects of void defects on fracture features and tensile strength of C/SiC composites an image-based FEM study. Applied Composite Materials, 2022, 29: 1021-1039 doi: 10.1007/s10443-021-10002-3
    [23]
    Li J, Zhao G, Ai S. Effect of various defects on tensile strength of C/SiC composites: Experiments and image based finite element analysis. Applied Composite Materials, 2025, 32: 1135-1152
    [24]
    Schwietert HR, Steif PS. The tensile strength of a fiber reinforced ceramic. International Journal of Solids and Structures, 1991, 28(3): 229-315
    [25]
    Hsueh CH. Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites. Acta Materialia, 1996, 44(6): 2211-2216 doi: 10.1016/1359-6454(95)00369-X
    [26]
    Sauder C, Lamon J, Pailler R. The tensile behavior of carbon fibers at high temperatures up to 2400 °C. Carbon, 2004, 42: 715-725 doi: 10.1016/j.carbon.2003.11.020
    [27]
    魏俊飞. 连续纤维增强复合材料的拉伸强度模型研究. [硕士学位]. 西安: 西北工业大学, 2025 ((Wei Junfei. Mechanical study on tensile strength model of continuous fiber reinforced composites. [Master Thesis]. Xi'an: Northwestern Polytechnical University, 2025 (in Chinese)

    (Wei Junfei. Mechanical study on tensile strength model of continuous fiber reinforced composites. [Master Thesis]. Xi'an: Northwestern Polytechnical University, 2025 (in Chinese)
    [28]
    杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度. 力学学报, 2011, 43(2): 330-337 (Yang Chengpeng, Jiao Guiqiong, Wang Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 330-337 (in Chinese)

    Yang Chengpeng, Jiao Guiqiong, Wang Bo. Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 330-337 (in Chinese)
    [29]
    李尧, 王晓晖, 刘宝瑞等. 界面韧性对C/SiC材料拉伸强度影响分析. 强度与环境, 2023, 50(5): 19-27 (Li Yao, Wang Xiaohui, Liu Baorui, et al. Effects of interlayer fracture toughness on tensile strength of C/SiC composites. Structure and Environment Engineering, 2023, 50(5): 19-27 (in Chinese)

    Li Yao, Wang Xiaohui, Liu Baorui, et al. Effects of interlayer fracture toughness on tensile strength of C/SiC composites. Structure and Environment Engineering, 2023, 50(5): 19-27 (in Chinese)
    [30]
    Yang CP, Jia F, Wang B, et al. Unified tensile model for unidirectional ceramic matrix composites with degraded fibers and interface. Journal of the European Ceramic Society, 2019, 39: 222-228 doi: 10.1016/j.jeurceramsoc.2018.09.006
  • Related Articles

    [1]Zhang Xiaoyuan, Lu Ziyin, Li Jinping, Zhang Shizhong, Lu Xingyu, Chen Hong. EXPERIMENTAL STUDY ON HYBRID DETONATION OF HYDROGEN-AIR MIXTURE WITH SUSPENDED METAL PARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2693-2702. DOI: 10.6052/0459-1879-23-290
    [2]Wang Tao, Zhu Jungao, Liu Sihong. DEM SIMULATION ON PLASTICITY BEHAVIOR OF SOIL-ROCK MIXTURES WITH DIFFERENT FINE CONTENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. DOI: 10.6052/0459-1879-21-618
    [3]Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. DOI: 10.6052/0459-1879-20-304
    [4]Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108
    [5]Liu Jianyun, Song Jingru, Wei Yueguang. DETERMINATIONS OF SURFACE ELASTIC PARAMETERS OF FCC-METALS BY USING THE CAUCHY-BORN RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 541-547. DOI: 10.6052/0459-1879-12-372
    [6]Chen Ti, Liu Weidong, Sun Mingbo, Fan Xiaoqiang, Liang Jianhan. PARAMETRIC STUDY ON THE BLENDING FUNCTION IN TRANSITION ZONE OF THE LES/RANS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 487-493. DOI: 10.6052/0459-1879-2012-3-20120304
    [7]Dynamic properties of a class of vibration with isolator with solid-and-liquid mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 253-258. DOI: 10.6052/0459-1879-2009-2-2008-059
    [8]Stresses of cohesionless solids flow in water-sediment mixture[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-156
    [9]ONE DIMENSIONAL NON-LINEAR VISCOELASTIC CONSTITUTIVE EQUATION OF BITUMINOUS MIXTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 728-734. DOI: 10.6052/0459-1879-1992-6-1995-796
    [10]A NONLINEAR CONSTITUTIVE THEORY FOR MIXTURE OFTWO-PHASE FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 82-91. DOI: 10.6052/0459-1879-1991-1-1995-812

Catalog

    Article Metrics

    Article views (30) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return