EI、Scopus 收录
中文核心期刊
Wang Xun, Hu Chenghao, Fan Haitao, Zhang Zekun, Li Qing. Research on dynamics of double bubbles in elastic cavity driven by ultrasound. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-12. DOI: 10.6052/0459-1879-25-127
Citation: Wang Xun, Hu Chenghao, Fan Haitao, Zhang Zekun, Li Qing. Research on dynamics of double bubbles in elastic cavity driven by ultrasound. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-12. DOI: 10.6052/0459-1879-25-127

RESEARCH ON DYNAMICS OF DOUBLE BUBBLES IN ELASTIC CAVITY DRIVEN BY ULTRASOUND

  • Received Date: March 24, 2025
  • Accepted Date: June 04, 2025
  • Available Online: June 04, 2025
  • Published Date: June 11, 2025
  • In practical applications of ultrasonic cavitation, bubbles may be confined within a small enclosed cavity. Under such conditions, the surrounding liquid cannot be treated as an unbounded medium, and the dynamic behaviors of the bubbles are influenced by the cavity walls. This study investigates the dynamics of two bubbles in a spherical elastic cavity driven by ultrasound based on numerical simulations. The effects of driving sound pressure amplitude and frequency, outer radius and initial inner radius of cavity, initial bubble positions and bubble ambient radii on the translations and pulsations double bubbles are systematically examined and analyzed. The results indicate that increasing the driving sound pressure amplitude will enhance the secondary Bjerknes force between double bubbles, therefore accelerates the translational motions of bubbles. Additionally, when the driving frequency is low or within certain optimal ranges, the bubbles also exhibit fast translational velocities. These findings suggest that the manipulation of movable bubbles within an elastic cavity can be achieved by adjusting the driving ultrasound. Analysis of bubble dynamics under varying cavity dimensions reveals that increasing the outer radius of the cavity affects bubble velocities in a complex manner, but this impact diminishes once the outer radius exceeds a certain threshold. Besides, increasing the initial inner radius of the cavity firstly enhances the bubble translation speed but subsequently slows it down in general. Furthermore, the initial positions and ambient radii of the bubbles significantly influence their motions. Bubbles that are symmetrically positioned relative to the cavity center and have identical ambient radii exhibit fast approach velocities. It is due to that under this condition, secondary Bjerknes force between bubbles is apparently significant. This study provides a theoretical foundation for precisely controlling motions of bubbles in closed elastic cavity with ultrasound, and is conducive to promoting the practical application and popularization of ultrasonic cavitation.
  • [1]
    王成会, 林书玉. 超声波作用下气泡的非线性振动. 力学学报, 2010, 42(6): 1050-1059 (Wang Chenghui, Lin Shuyu. The nonlinear oscillation of bubbles in the ultrasonic field. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1050-1059 (in Chinese)

    Wang Chenghui, Lin Shuyu. The nonlinear oscillation of bubbles in the ultrasonic field. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1050-1059 (in Chinese)
    [2]
    张阿漫, 李世民, 李帅等. 气泡动力学研究进展. 力学学报, 2025, 57(1): 1-16 (Zhang Aman, Li Shimin, Li Shuai, et al. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16 (in Chinese) doi: 10.6052/0459-1879-24-545

    Zhang Aman, Li Shimin, Li Shuai, et al. Advancements in bubble dynamics research. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 1-16 (in Chinese) doi: 10.6052/0459-1879-24-545
    [3]
    Kamal H, Ali A, Manickam S, et al. Impact of cavitation on the structure and functional quality of extracted protein from food sources—An overview. Food Chemistry, 2023, 407: 135071 doi: 10.1016/j.foodchem.2022.135071
    [4]
    Song K, Liu Y, Umar A, et al. Ultrasonic cavitation: Tackling organic pollutants in wastewater. Chemosphere, 2024, 350: 141024 doi: 10.1016/j.chemosphere.2023.141024
    [5]
    Wang M, Lei Y, Zhou Y. High-intensity focused ultrasound (HIFU) ablation by the frequency chirps: Enhanced thermal field and cavitation at the focus. Ultrasonics, 2019, 91: 134-149 doi: 10.1016/j.ultras.2018.08.017
    [6]
    Lv S, Zheng H, Yao R, et al. Monitoring acoustic cavitation effects in tissues under the action of HIFU based on ultrasound images. Applied Acoustics, 2024, 219: 109937 doi: 10.1016/j.apacoust.2024.109937
    [7]
    陈伟中. 声空化泡对声传播的屏蔽特性. 应用声学, 2018, 37(5): 675-679 (Chen Weizhong. Cavitation bubbles screen the acoustic propagation. Journal of Applied Acoustics, 2018, 37(5): 675-679 (in Chinese) doi: 10.11684/j.issn.1000-310X.2018.05.011

    Chen Weizhong. Cavitation bubbles screen the acoustic propagation. Journal of Applied Acoustics, 2018, 37(5): 675-679 (in Chinese) doi: 10.11684/j.issn.1000-310X.2018.05.011
    [8]
    Shen X, Wu P, Lin W. A new model for bubble cluster dynamics in a viscoelastic media. Ultrasonics Sonochemistry, 2024, 107: 106890 doi: 10.1016/j.ultsonch.2024.106890
    [9]
    Fan Y, Li H, Zhu J, et al. A simple model of bubble cluster dynamics in an acoustic field. Ultrasonics Sonochemistry, 2020, 64: 104790 doi: 10.1016/j.ultsonch.2019.104790
    [10]
    Chen Y, Ni C, Xie G, et al. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves. Ultrasonics Sonochemistry, 2020, 64: 105003 doi: 10.1016/j.ultsonch.2020.105003
    [11]
    马艳, 林书玉, 徐洁. 声场中气泡间次Bjerknes力和气泡群聚现象. 陕西师范大学学报(自然科学版), 2018, 46(2): 40-44, 56 (Ma Yan, Lin Shuyu, Xu Jie. The secondary Bjerknes force between two spherical bubbles and bubble accumulation. Journal of Shaanxi Normal University (Natural Science Edition), 2018, 46(2): 40-44, 56 (in Chinese)

    Ma Yan, Lin Shuyu, Xu Jie. The secondary Bjerknes force between two spherical bubbles and bubble accumulation. Journal of Shaanxi Normal University (Natural Science Edition), 2018, 46(2): 40-44, 56 (in Chinese)
    [12]
    Ida M, Naoe T, Futakawa M. Suppression of cavitation inception by gas bubble injection: A numerical study focusing on bubble-bubble interaction. Physical Review E, 2007, 76: 046309 doi: 10.1103/PhysRevE.76.046309
    [13]
    Sadighi-Bonabi R, Rezaee N, Ebrahimi H, et al. Interaction of two oscillating sonoluminescence bubbles in sulfuric acid. Physical Review E, 2010, 82: 016316 doi: 10.1103/PhysRevE.82.016316
    [14]
    Pandey V. Asymmetricity and sign reversal of secondary Bjerknes force from strong nonlinear coupling in cavitation bubble pairs. Physical Review E, 2019, 99: 042209 doi: 10.1103/PhysRevE.99.042209
    [15]
    王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究. 物理学报, 2018, 67(3): 037802 (Wang Dexin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802 (in Chinese) doi: 10.7498/aps.67.20171805

    Wang Dexin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802 (in Chinese) doi: 10.7498/aps.67.20171805
    [16]
    王玉荣, 杨日福. 双泡模型共振频率的超声空化动力学研究. 应用声学, 2023, 42(2): 357-362 (Wang Yurong, Yang Rifu. The theoretical study of ultrasonic cavitation dynamics of natural frequency of oscillation of double gas bubbles. Journal of Applied Acoustics, 2023, 42(2): 357-362 (in Chinese)

    Wang Yurong, Yang Rifu. The theoretical study of ultrasonic cavitation dynamics of natural frequency of oscillation of double gas bubbles. Journal of Applied Acoustics, 2023, 42(2): 357-362 (in Chinese)
    [17]
    李娜. 非单频声场中耦合双泡振动特性研究. 云南大学学报(自然科学版), 2024, 46(1): 67-73 (Li Na. The vibration characteristics of two mutually interacting gas bubbles in non single frequency acoustic field. Journal of Yunnan University: Natural Sciences Edition, 2024, 46(1): 67-73 (in Chinese) doi: 10.7540/j.ynu.20220495

    Li Na. The vibration characteristics of two mutually interacting gas bubbles in non single frequency acoustic field. Journal of Yunnan University: Natural Sciences Edition, 2024, 46(1): 67-73 (in Chinese) doi: 10.7540/j.ynu.20220495
    [18]
    Doinikov AA. Translational motion of two interacting bubbles in a strong acoustic field. Physical Review E, 2001, 64(2): 026301 doi: 10.1103/PhysRevE.64.026301
    [19]
    Doinikov AA, Bouakaz A. Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances. Physical Review E, 2015, 92: 043001 doi: 10.1103/PhysRevE.92.043001
    [20]
    Zhang X, Li F, Wang C, et al. Effects of translational motion on the Bjerknes forces of bubbles activated by strong acoustic waves. Ultrasonics, 2022, 126: 106809 doi: 10.1016/j.ultras.2022.106809
    [21]
    Lebon GSB, Pericleous K, Tzanakis I, et al. Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field. Physical Review E, 2015, 92: 043004 doi: 10.1103/PhysRevE.92.043004
    [22]
    Zhang L, Chen W, Shen Y, et al. The nonlinear characteristics of the pulsations, translations and the secondary Bjerknes force. Chaos, Solitons and Fractals, 2021, 152: 111322 doi: 10.1016/j.chaos.2021.111322
    [23]
    左馨怡, 雷照康, 武耀蓉等. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301 (Zuo Xinyi, Lei Zhaokang, Wu Yaorong, et al. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301 (in Chinese) doi: 10.7498/aps.73.20240606

    Zuo Xinyi, Lei Zhaokang, Wu Yaorong, et al. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301 (in Chinese) doi: 10.7498/aps.73.20240606
    [24]
    Zhang X, Li F, Wang C, et al. Radial oscillation and translational motion of a gas bubble in a micro-cavity. Ultrasonics Sonochemistry, 2022, 84: 105957 doi: 10.1016/j.ultsonch.2022.105957
    [25]
    张先梅, 王成会, 郭建中等. 无界弹性介质球形液体空腔中的气泡的动力学. 物理学报, 2021, 70(21): 214305 (Zhang Xianmei, Wang Chenghui, Guo Jianzhong, et al. Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium. Acta Physica Sinica, 2021, 70(21): 214305 (in Chinese) doi: 10.7498/aps.70.20210869

    Zhang Xianmei, Wang Chenghui, Guo Jianzhong, et al. Dynamics of bubbles in spherical liquid cavity wrapped by elastic medium. Acta Physica Sinica, 2021, 70(21): 214305 (in Chinese) doi: 10.7498/aps.70.20210869
    [26]
    Schenk HJ, Steppe K, Jansen S. Nanobubbles: A new paradigm for air-seeding in xylem. Trends in Plant Science, 2015, 20(4): 199-205 doi: 10.1016/j.tplants.2015.01.008
    [27]
    Doinikov AA, Bienaimé D, Gonzalez-Avila SR, et al. Nonlinear dynamics of two coupled bubbles oscillating inside a liquid-filled cavity surrounded by an elastic medium. Physical Review E, 2019, 99: 053106 doi: 10.1103/PhysRevE.99.053106
    [28]
    Doinikov AA, Dollet B, Marmottant P. Model for the growth and the oscillation of a cavitation bubble in a spherical liquid-filled cavity enclosed in an elastic medium. Physical Review E, 2018, 97: 013108 doi: 10.1103/PhysRevE.97.013108
    [29]
    Doinikov AA, Marmottant P. Natural oscillations of a gas bubble in a liquid-filled cavity located in a viscoelastic medium. Journal of Sound and Vibration, 2018, 420: 61-72 doi: 10.1016/j.jsv.2018.01.034
    [30]
    张陶然, 莫润阳, 胡静等. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, 2020, 69(23): 234301 (Zhang Taoran, Mo Runyang, Hu Jing, et al. Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium. Acta Physica Sinica, 2020, 69(23): 234301 (in Chinese) doi: 10.7498/aps.69.20200764

    Zhang Taoran, Mo Runyang, Hu Jing, et al. Interaction between bubble and particle in spherical liquid cavity surround by an elastic medium. Acta Physica Sinica, 2020, 69(23): 234301 (in Chinese) doi: 10.7498/aps.69.20200764
    [31]
    张陶然, 莫润阳, 胡静等. 黏弹介质包裹的液体腔中气泡的动力学分析. 物理学报, 2021, 70(12): 124301 (Zhang Taoran, Mo Runyang, Hu Jing, et al. Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2021, 70(12): 124301 (in Chinese) doi: 10.7498/aps.70.20201876

    Zhang Taoran, Mo Runyang, Hu Jing, et al. Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2021, 70(12): 124301 (in Chinese) doi: 10.7498/aps.70.20201876
    [32]
    Chen H, Zeng Y, Li Y. Machine learning models for the secondary Bjerknes force between two insonated bubbles. Acta Mechanica Sinica, 2021, 37(1): 35-46 doi: 10.1007/s10409-020-01028-0
    [33]
    Vanhille C. A fourth-order approximation Rayleigh-Plesset equation written in volume variation for an adiabatic-gas bubble in an ultrasonic field: Derivation and numerical solution. Results in Physics, 2021, 25: 104193 doi: 10.1016/j.rinp.2021.104193
    [34]
    Toegel R, Luther S, Lohse D. Viscosity destabilizes sonoluminescing bubbles. Physical Review Letters, 2006, 96: 114301 doi: 10.1103/PhysRevLett.96.114301
    [35]
    Galavani Z, Rezaei-Nasirabad R, Bhattarai S. On the dynamics of moving single bubble sonoluminescence. Physics Letters A, 2010, 374: 4531-4537 doi: 10.1016/j.physleta.2010.09.017
    [36]
    Matula TJ. Single-bubble sonoluminescence in microgravity. Ultrasonics, 2000, 38: 559-565 doi: 10.1016/S0041-624X(99)00217-6
    [37]
    Qin D, Zou Q, Lei S, et al. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrasonics Sonochemistry, 2021, 78: 105712 doi: 10.1016/j.ultsonch.2021.105712
    [38]
    Zhang X, Ning Z, Lyu M, et al. Transition mechanisms of translational motions of bubbles in an ultrasonic field. Ultrasonics Sonochemistry, 2023, 92: 106271 doi: 10.1016/j.ultsonch.2022.106271
    [39]
    Zhang LL, Liang JF, Wang X. The nonlinear characteristic of bubble pulsation. Journal of the Physical Society of Japan, 2024, 93: 114401 doi: 10.7566/JPSJ.93.114401
    [40]
    Zhang L, Chen W, Shen Y, et al. Effect of nonlinear translations on the pulsation of cavitation bubbles. Chinese Physics B, 2022, 31(4): 044303 doi: 10.1088/1674-1056/ac1e18
  • Related Articles

    [1]Long Long, Zheng Yuxuan, Zhou Fenghua, Ren Huilan, Ning Jianguo. UNLOADING FLEXURAL STRESS WAVE IN A TIMOSHENKO BEAM AND THE SECONDARY FRACTURE OF THE BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1658-1670. DOI: 10.6052/0459-1879-21-106
    [2]Ding Zhouxiang. ONE-DIMENSIONAL SEEPAGE FORCE AND BUOYANCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1154-1162. DOI: 10.6052/0459-1879-17-001
    [3]Ding Jue, Wang Qingtao, Liu Yi, Ying Mengkan. NUMERICAL STUDY ON THE GROWTH PROCESS OF SECONDARY AEROSOL IN THE FOG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 164-170. DOI: 10.6052/0459-1879-12-310
    [4]Wei Shi Ximin Liu Shoufeng Lu. An estimation approach of wave speed in real traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 850-855. DOI: 10.6052/0459-1879-2011-5-lxxb2010-709
    [5]Heng-Dou Tian Jin Liang-an Chi Wei Fang Yi Han Yundong Wang Yong. Impact of basset force on the movement of soluble bubble in fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 680-687. DOI: 10.6052/0459-1879-2011-4-lxxb2010-069
    [6]Xiaohai Jiang, Baochun Fan fanffan, . Dynamics in external secondary explosion during venting[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 442-450. DOI: 10.6052/0459-1879-2005-4-2004-017
    [7]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [8]SECONDARY BUCKLING OF A STRUT ON AN ELASTIC FOUNDATION UNDER AXIAL COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 443-451. DOI: 10.6052/0459-1879-1993-4-1995-664
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]SECONDARY BIFURCATIONS OF A SLENDER ELASTIC BAR UNDER AXIAL COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 347-354. DOI: 10.6052/0459-1879-1991-3-1995-847

Catalog

    Article Metrics

    Article views (13) PDF downloads (4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return