Citation: | Xie Yu, Li Yanmin, Zhang Chengpu, Zhao Gangling, Chen Xiangwei. Numerical solution method of Noether symmetry for piezoelectric micro/nano level high-precision positioning system. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1493-1503. DOI: 10.6052/0459-1879-25-052 |
[1] |
Huang WW, Wang XY, Meng YX, et al. Design, modeling and control of high-bandwidth nano-positioning stages for ultra-precise measurement and manufacturing: a survey. International Journal of Extreme Manufacturing, 2024, 6(6): 1-31
|
[2] |
Lyu Z, Xu QS, Zhu LM. Design of a compliant vertical micropositioning stage based on lamina emergent mechanisms. IEEE/ASME Transactions on Mechatronics, 2023, 28(4): 2131-2141 doi: 10.1109/TMECH.2023.3235336
|
[3] |
Liechti R, Durand S, Hilt T, et al. High performance piezoelectric MEMS loudspeaker based on an innovative wafer bonding process. Sensors and Actuators A: Physical, 2023, 358: 1-9
|
[4] |
司马津甫, 赖磊捷, 李朋志等. 三自由度压电偏摆台耦合迟滞模型建模与逆补偿. 光学精密工程, 2023, 31(20): 2964-2974 (Sima Jinpu, Lai Leijie, Li Pengzhi, et al. Coupled hysteresis model and its inverse compensation for three-degree-of-freedom tip-tilt-piston piezoelectric stage. Optics and Precision Engineering, 2023, 31(20): 2964-2974 (in Chinese) doi: 10.37188/OPE.20233101.0001
Sima Jinpu, Lai Leijie, Li Pengzhi, et al. Coupled hysteresis model and its inverse compensation for three-degree-of-freedom tip-tilt-piston piezoelectric stage. Optics and Precision Engineering, 2023, 31(20): 2964-2974 (in Chinese) doi: 10.37188/OPE.20233101.0001
|
[5] |
Brandi C, De Ninno A, Verona E, et al. Numerical and experimental characterization of a piezoelectric actuator for microfluidic cell sorting. Sensors and Actuators A: Physical, 2024, 367: 1-10
|
[6] |
Cao K, Xie RY, Zhou JM, et al. Optimizing the location of the piezoelectric actuator and analyzing its effect on the dynamics of asymmetric flexible spacecraft. Aerospace, 2023, 10(8): 1-26
|
[7] |
Uralde J, Artetxe E, Barambones O, et al. Ultraprecise controller for piezoelectric actuators based on deep learning and model predictive control. Sensors, 2023, 23(3): 1-26
|
[8] |
Zhou M, Dai Z, Zhou Z, et al. Modeling, identification, and high-speed compensation study of dynamic hysteresis nonlinearity for piezoelectric actuator. Journal of Intelligent Material Systems and Structures, 2024, 35(9): 822-844 doi: 10.1177/1045389X231225492
|
[9] |
Zhou XY, Wu S, Wang XX, et al. Review on piezoelectric actuators: materials, classifications, applications, and recent trends. Frontiers of Mechanical Engineering, 2024, 19(1): 1-29 doi: 10.1007/s11465-023-0771-1
|
[10] |
Nie LL, Luo YL, Gao W, et al. Rate-dependent asymmetric hysteresis modeling and robust adaptive trajectory tracking for piezoelectric micropositioning stages. Nonlinear Dynamics, 2022, 108(3): 2023-2043
|
[11] |
Yuan ZX, Zhou SL, Zhang ZG, et al. Piezo-actuated smart mechatronic systems: Nonlinear modeling, identification, and control. Mechanical Systems and Signal Processing, 2024, 221: 1-46
|
[12] |
Chen XK, Hisayam T. Adaptive sliding-mode position control for piezo-actuated stage. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3927-3934
|
[13] |
Gu GY, Zhu LM, Su CY, et al. Motion control of piezoelectric positioning stages: Modeling, controller design, and experimental evaluation. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1459-1471
|
[14] |
Lin CJ, Chen SY. Evolutionary algorithm based feedforward control for contouring of a biaxial piezo-actuated stage. Mechatronics, 2009, 19(6): 829-839
|
[15] |
Giri F, Rochdi Y, Chaoui F Z, et al. Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities. Automatica, 2008, 44(3): 767-775
|
[16] |
Zhang Y, Yan P. Modeling, identification and compensation of hysteresis nonlinearity for a piezoelectric nano-manipulator. Journal of Intelligent Material Systems and Structures, 2017, 28(7): 907-922
|
[17] |
梅凤翔. 李群和李代数对约束力学系统的应用. 北京: 科学出版社, 1999 (Mei Fengxiang. Applications of Lie Group and Lie Algebraic to Constraint Mechanics Systems. Beijing: Science Press, 1999 (in Chinese)
Mei Fengxiang. Applications of Lie Group and Lie Algebraic to Constraint Mechanics Systems. Beijing: Science Press, 1999 (in Chinese)
|
[18] |
Mei FX, Wu HB. Dynamics of Constrain Mechanical Systems. Beijing: Beijing Institute of Technology Press, 2009
|
[19] |
Fu JL, Zhang LJ, Khalique CM, et al. Motion equations and non-Noether symmetries of Lagrangian systems with the conformable fractional derivatives. Thermal Science, 2021, 25(2B): 1365-1372
|
[20] |
Wang XP, Zhang Y. Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians. Symmetry, 2019, 11: 1-14
|
[21] |
Zhang Y, Zhai XH. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dynamics, 2015, 81(1-2): 469-480
|
[22] |
Zhang Y, Zhai XH. Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales. Communications in Nonlinear Science and Numerical Simulation, 2019, 75: 251-261
|
[23] |
Jin SX, Zhang Y. The approximate Noether symmetries and conservation laws for approximate Birkhoffian systems. Nonlinear Dynamics, 2023, 111(14): 13235-13243
|
[24] |
Fu JL, Chen BY, Fu H, et al. Velocity-dependent symmetries and non-Noether conserved quantities of electromechanical systems. Science China: Physics, Mechanics & Astronomy, 2011, 54(2): 288-295
|
[25] |
徐宏, 傅景礼. 基于伺服电机驱动的进给传动系统扭转振动的 Lie 群分析方法. 力学学报, 2023, 55(9): 2000-2009 (Xu Hong, Fu Jingli. Lie group analysis for torsibnal vibration of serve motor driven feeder drive system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese) doi: 10.6052/0459-1879-23-186
Xu Hong, Fu Jingli. Lie group analysis for torsibnal vibration of serve motor driven feeder drive system. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2000-2009 (in Chinese) doi: 10.6052/0459-1879-23-186
|
[26] |
傅景礼, 陆晓丹, 项春. 爬壁机器人系统的Noether对称性和守恒量. 力学学报, 2022, 54(6): 1680-1693 (Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese) doi: 10.6052/0459-1879-22-084
Fu Jingli, Lu Xiaodan, Xiang Chun. Noether symmetries and conserved quantities of wall climbing robot system. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1680-1693 (in Chinese) doi: 10.6052/0459-1879-22-084
|
[27] |
梅凤翔. 经典约束力学系统对称性与守恒量研究进展. 力学进展, 2009, 39(1): 37-43 (Mei Fengxiang. Advances in the symmetries and conserved quantities of classical constrained systems. Advances in Mechanics, 2009, 39(1): 37-43 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.01.002
Mei Fengxiang. Advances in the symmetries and conserved quantities of classical constrained systems. Advances in Mechanics, 2009, 39(1): 37-43 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.01.002
|
[28] |
Lu WL, Chen C, Zhu H, et al. Fast and accurate mean-shift vector based wavelength extraction for chromatic confocal microscopy. Measurement Science and Technology, 2019, 30(11): 1-7
|
[29] |
Lee SJ, Lee YJ, Seo S, et al. Effect of the surroundings on the photophysical properties of CsPbBr3 perovskite quantum dots embedded in SiOx matrices. Bulletin of the Korean Chemical Society, 2022, 43(12): 1312-1319 doi: 10.1002/bkcs.12628
|
[30] |
Tan UX, Latt WT, Shee CY, et al. A low-cost flexure-based handheld mechanism for micromanipulation. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 773-778 doi: 10.1109/TMECH.2010.2069568
|
[31] |
Preumont A. Mechatronics Dynamics of Electromechanical and Piezoelectric Systems. Netherlands: Springer Press, 2006
|
[32] |
Brokate M, Sprekels J. Hysteresis and Phase Transitions. New York: Springer Press, 1996
|
[33] |
谷国迎. 压电陶瓷驱动微位移平台的磁滞补偿控制理论和方法研究. [博士论文]. 上海: 上海交通大学, 2012 (Gu Guoying. Control of piezoceramic actuated micro/nanopositioning stages with hysteresis compensation. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese)
Gu Guoying. Control of piezoceramic actuated micro/nanopositioning stages with hysteresis compensation. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese)
|