EI、Scopus 收录
中文核心期刊
Wang Shiyuan, Yue Baozeng. On-orbit identification study of equivalent model parameters of liquid-filled spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1457-1468. DOI: 10.6052/0459-1879-25-014
Citation: Wang Shiyuan, Yue Baozeng. On-orbit identification study of equivalent model parameters of liquid-filled spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1457-1468. DOI: 10.6052/0459-1879-25-014

ON-ORBIT IDENTIFICATION STUDY OF EQUIVALENT MODEL PARAMETERS OF LIQUID-FILLED SPACECRAFT

  • Received Date: January 07, 2025
  • Accepted Date: April 16, 2025
  • Available Online: April 16, 2025
  • Published Date: April 20, 2025
  • Modern spacecraft usually carry a large amount of liquid propellant. The consumption of propellant leads to the change of the equivalent model parameters used for propellant sloshing modeling. In order to obtain the accurate equivalent model parameters and introduce them into the closed-loop control of GNC (guidance, navigation and control) system to improve the attitude control accuracy of spacecraft, this paper proposes an on-orbit identification strategy for equivalent model parameters based on square root cubature kalman filter (SR-CKF). Firstly, in order to establish an equivalent model applicable to the metal diaphragm tank, a torsion spring-damper is applied at the suspension point of the equivalent spherical pendulum model to equate the stiffness-damping effect of the metal diaphragm on the propellant, and the spacecraft rigid-liquid coupled dynamic equations are established with the help of Kane's method. Secondly, an SR-CKF based on-orbit identification strategy of the equivalent model parameters is proposed for the situation where the equivalent model parameters are unknown in the state feedback backstepping controller. This strategy can identify the parameters of the equivalent model and the remaining amount of propellant in the tank and predict the propellant distribution motion state online according to the on-board angular velocity sensor data while the spacecraft completes a large-angle attitude maneuver mission. Finally, the numerical simulation results demonstrate the effectiveness and necessity of the on-orbit identification strategy proposed in this paper. This work has important reference value for the calibration iteration of the equivalent model in the GNC system of spacecraft, the study of the on-orbit sloshing behavior of propellants, and the prediction of service life of spacecraft.
  • [1]
    Liu F, Yue BZ, Banerjee AK, et al. Large motion dynamics of in-orbit flexible spacecraft with large amplitude propellant slosh. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 438-450 doi: 10.2514/1.G004685
    [2]
    Yue BZ, Wu WJ, Yan YL. Modeling and coupling dynamics of the spacecraft with multiple propellant tanks. AIAA Journal, 2016, 54(11): 3608-3618 doi: 10.2514/1.J055110
    [3]
    Zhou ZC, Huang H. Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks. Acta Astronautica, 2015, 111: 222-229 doi: 10.1016/j.actaastro.2015.02.023
    [4]
    岳宝增, 于嘉瑞, 吴文军. 多储液腔航天器刚液耦合动力学与复合控制. 力学学报, 2017, 49(2): 390-396 (Yue Baozeng, Yu Jiarui, Wu Wenjun. Rigid and liquid coupling dynamics and hybrid control of spacecraft with multiple propellant tanks. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 390-396 (in Chinese) doi: 10.6052/0459-1879-16-342

    Yue Baozeng, Yu Jiarui, Wu Wenjun. Rigid and liquid coupling dynamics and hybrid control of spacecraft with multiple propellant tanks. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 390-396 (in Chinese) doi: 10.6052/0459-1879-16-342
    [5]
    Dodge FT. The new dynamic behavior of liquids in moving containers//NASA SP-106, Southwest Research Institute, San Antonio, TX, 2000
    [6]
    卢煜, 岳宝增, 马伯乐等. 重力环境下液体大幅晃动运动脉动球模型及实验研究. 力学学报, 2022, 54(9): 2543-2551 (Lu Yu, Yue Baozeng, Ma Bole, et al. Moving pulsating ball equivalent model and its validation experiment for large amplitude liquid slosh in gravity environment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2543-2551 (in Chinese) doi: 10.6052/0459-1879-22-187

    Lu Yu, Yue Baozeng, Ma Bole, et al. Moving pulsating ball equivalent model and its validation experiment for large amplitude liquid slosh in gravity environment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2543-2551 (in Chinese) doi: 10.6052/0459-1879-22-187
    [7]
    Lu Y, Yue B, Ma B, et al. A universal nonlinear equivalent model and its stability analysis for large amplitude liquid sloshing in rotationally symmetric tanks. Nonlinear Dynamics, 2025, 113: 6031-6047
    [8]
    丁文镜, 曾庆长. 晃动液体单摆模型动力学参数的频域辨识. 振动工程学报, 1992, 5(3): 211-218 (Ding Wenjing, Zeng Qingchang. Identification in frequency domain for dynamic parameters of pendulum model of sloshing liquid. Journal of Vibration Engineering, 1992, 5(3): 211-218 (in Chinese)

    Ding Wenjing, Zeng Qingchang. Identification in frequency domain for dynamic parameters of pendulum model of sloshing liquid. Journal of Vibration Engineering, 1992, 5(3): 211-218 (in Chinese)
    [9]
    李青, 马兴瑞, 王天舒. 非轴对称贮箱液体晃动的等效力学模型. 宇航学报, 2011, 32(2): 242-249 (Li Qing, Ma Xingrui, Wang Tianshu. Equivalent mechanical model for liquid sloshing in non-axisymmetric tanks. Journal of Astronautics, 2011, 32(2): 242-249 (in Chinese)

    Li Qing, Ma Xingrui, Wang Tianshu. Equivalent mechanical model for liquid sloshing in non-axisymmetric tanks. Journal of Astronautics, 2011, 32(2): 242-249 (in Chinese)
    [10]
    陈青全. 卫星贮箱液体晃动等效力学模型参数辨识. [硕士论文]. 长沙: 国防科学技术大学, 2014 (Chen Qingquan. Parameter identification of liquid sloshing equivalent mechanical model in satellite tank. [Master Thesis]. Changsha: National University of Defense Technology, 2014 (in Chinese)

    Chen Qingquan. Parameter identification of liquid sloshing equivalent mechanical model in satellite tank. [Master Thesis]. Changsha: National University of Defense Technology, 2014 (in Chinese)
    [11]
    吴文军, 李超, 高超南. 球形贮箱内液体晃动实验及动力学特性研究. 实验力学, 2021, 36(6): 849-859 (Wu Wenjun, Li Chao, Gao Chaonan. Experimental and dynamic characteristics studies for liquid sloshing in a spherical tank. Journal of Experimental Mechanics, 2021, 36(6): 849-859 (in Chinese)

    Wu Wenjun, Li Chao, Gao Chaonan. Experimental and dynamic characteristics studies for liquid sloshing in a spherical tank. Journal of Experimental Mechanics, 2021, 36(6): 849-859 (in Chinese)
    [12]
    刘峰, 岳宝增, 唐勇. 多充液贮腔航天器耦合动力学与姿态控制. 宇航学报, 2020, 41(1): 19-26 (Liu Feng, Yue Baozeng, Tang Yong. Dynamics modeling and attitude control of spacecraft with multiple propellant tanks. Journal of Astronautics, 2020, 41(1): 19-26 (in Chinese) doi: 10.3873/j.issn.1000-1328.2020.01.003

    Liu Feng, Yue Baozeng, Tang Yong. Dynamics modeling and attitude control of spacecraft with multiple propellant tanks. Journal of Astronautics, 2020, 41(1): 19-26 (in Chinese) doi: 10.3873/j.issn.1000-1328.2020.01.003
    [13]
    宋晓娟, 岳宝增, 闫玉龙等. 液体多模态晃动充液航天器姿态机动复合控制. 宇航学报, 2015, 36(7): 819-825 (Song Xiaojuan, Yue Baozeng, Yan Yulong, et al. Hybrid control for attitude maneuver of liquid-filled spacecraft with multiple modal liquid sloshing. Journal of Astronautics, 2015, 36(7): 819-825 (in Chinese)

    Song Xiaojuan, Yue Baozeng, Yan Yulong, et al. Hybrid control for attitude maneuver of liquid-filled spacecraft with multiple modal liquid sloshing. Journal of Astronautics, 2015, 36(7): 819-825 (in Chinese)
    [14]
    Yue BZ, Zhao LM. Hybrid control of liquid-filled spacecraft maneuvers by dynamic inversion and input shaping. AIAA Journal, 2014, 52(3): 618-626 doi: 10.2514/1.J052526
    [15]
    Liu F, Yue B, Zhao L. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels. Acta Astronautica, 2018, 143: 327-336 doi: 10.1016/j.actaastro.2017.11.036
    [16]
    臧家亮. “神舟”号载人飞船推进分系统的研制. 上海航天, 2003, 20(5): 5-10 (Zang Jialiang. The development of the propulsion subsystem of Shenzhou manned spaceship. Aerospace Shanghai, 2003, 20(5): 5-10 (in Chinese)

    Zang Jialiang. The development of the propulsion subsystem of Shenzhou manned spaceship. Aerospace Shanghai, 2003, 20(5): 5-10 (in Chinese)
    [17]
    白明生, 金勇, 雷剑宇等. 天舟一号货运飞船研制. 载人航天, 2019, 25(2): 249-255 (Bai Mingsheng, Jin Yong, Lei Jianyu, et al. Research on location deployment of tianzhou-1 cargo spacecraft. Manned Spaceflight, 2019, 25(2): 249-255 (in Chinese) doi: 10.3969/j.issn.1674-5825.2019.02.018

    Bai Mingsheng, Jin Yong, Lei Jianyu, et al. Research on location deployment of tianzhou-1 cargo spacecraft. Manned Spaceflight, 2019, 25(2): 249-255 (in Chinese) doi: 10.3969/j.issn.1674-5825.2019.02.018
    [18]
    韩泉东, 刘锋, 潘一力等. 天问一号火星着陆巡视器推进系统特点及飞行分析. 中国科学: 技术科学, 2022, 52(2): 237-244 (Han Quandong, Liu Feng, Pan Yili, et al. Characteristics and flight performance of the Tianwen-1 Mars Lander propulsion system. Scientia Sinica (Technologica), 2022, 52(2): 237-244 (in Chinese) doi: 10.1360/SST-2021-0481

    Han Quandong, Liu Feng, Pan Yili, et al. Characteristics and flight performance of the Tianwen-1 Mars Lander propulsion system. Scientia Sinica (Technologica), 2022, 52(2): 237-244 (in Chinese) doi: 10.1360/SST-2021-0481
    [19]
    Chatman Y, Gangadharan S, Schlee K, et al. Mechanical analog approach to parameter estimation of lateral spacecraft fuel slosh//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2008: 2392
    [20]
    Klatte J, Darkow N, Gajdacz R, et al. Sloshing and pressurization tests for membrane tank: Tests, validation and models. Acta Astronautica, 2020, 175: 338-348 doi: 10.1016/j.actaastro.2020.05.036
    [21]
    Quadrelli MB. Nutation time constant determination of on-axis diaphragm tanks on spinner spacecraft. Journal of Spacecraft and Rockets, 2005, 42(3): 530-542 doi: 10.2514/1.5054
    [22]
    Lenahen B, Bernier A, Gangadharan S, et al. A computational investigation for determining the natural frequencies and damping effects of diaphragm-implemented spacecraft propellant tanks//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2012: 1886
    [23]
    魏喜庆, 宋申民. 基于容积卡尔曼滤波的卫星姿态估计. 宇航学报, 2013, 34(2): 193-200 (Wei Xiqing, Song Shenmin. Cubature Kalman filter-based satellite attitude estimation. Journal of Astronautics, 2013, 34(2): 193-200 (in Chinese)

    Wei Xiqing, Song Shenmin. Cubature Kalman filter-based satellite attitude estimation. Journal of Astronautics, 2013, 34(2): 193-200 (in Chinese)
    [24]
    Julier S, Uhlmann J, Durrant-Whyte HF. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482 doi: 10.1109/9.847726
    [25]
    Arasaratnam I, Haykin S. Cubature kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269 doi: 10.1109/TAC.2009.2019800
    [26]
    张勇刚, 黄玉龙, 武哲民等. 一种高阶无迹卡尔曼滤波方法. 自动化学报, 2014, 40(5): 838-848 (Zhang Yonggang, Huang Yulong, Wu Zhemin, et al. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5): 838-848 (in Chinese)

    Zhang Yonggang, Huang Yulong, Wu Zhemin, et al. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5): 838-848 (in Chinese)
    [27]
    Arasaratnam I, Haykin S. Square-root quadrature Kalman filtering. IEEE Transactions on Signal Processing, 2008, 56(6): 2589-2593 doi: 10.1109/TSP.2007.914964
    [28]
    刘峰, 岳宝增, 马伯乐等. 燃料消耗下充液航天器等效动力学建模与分析. 力学学报, 2020, 52(5): 1454-1464 (Liu Feng, Yue Baozeng, Ma Bole, et al. Equivalent dynamics modeling and analysis of liquid-filled spacecraft with fuel consumption. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464 (in Chinese) doi: 10.6052/0459-1879-20-027

    Liu Feng, Yue Baozeng, Ma Bole, et al. Equivalent dynamics modeling and analysis of liquid-filled spacecraft with fuel consumption. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464 (in Chinese) doi: 10.6052/0459-1879-20-027
    [29]
    Kang JY, Lee S. Attitude acquisition of a satellite with a partially filled liquid tank. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 790-793 doi: 10.2514/1.31865
    [30]
    张绪虎, 唐斌, 李金山等. 航天器贮箱用钛制隔膜变形过程的数值模拟. 宇航学报, 2010, 31(9): 2184-2188 (Zhang Xuhu, Tang Bin, Li Jinshan, et al. Deformation numerical simulation of titanium diaphragm for spacecraft tank. Journal of Astronautics. 2010, 31(9): 2185-2188 (in Chinese)

    Zhang Xuhu, Tang Bin, Li Jinshan, et al. Deformation numerical simulation of titanium diaphragm for spacecraft tank. Journal of Astronautics. 2010, 31(9): 2185-2188 (in Chinese)
    [31]
    Haghparast B, Salarieh H, Nejat PH, et al. Observer-based adaptive backstepping sliding-mode control of the satellite attitude with a partially filled spherical fuel tank. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2023, 47(4): 1761-1775 doi: 10.1007/s40997-022-00584-z
    [32]
    郝燕玲, 杨峻巍, 陈亮等. 平方根容积卡尔曼滤波器. 弹箭与制导学报, 2012, 32(2): 169-172 (Hao Yanling, Yang Junwei, Chen Liang, et al. Square root cubature Kalman filter. Journal of Projectiles Rockets Missiles and Guidance, 2012, 32(2): 169-172 (in Chinese) doi: 10.3969/j.issn.1673-9728.2012.02.047

    Hao Yanling, Yang Junwei, Chen Liang, et al. Square root cubature Kalman filter. Journal of Projectiles Rockets Missiles and Guidance, 2012, 32(2): 169-172 (in Chinese) doi: 10.3969/j.issn.1673-9728.2012.02.047
    [33]
    Challoner AD. Determination of spacecraft liquid fill fraction//Guidance, Navigation and Control Conference, 1993: 3727
  • Related Articles

    [1]Ding Shengyong, Fan Yong, Yang Guangdong. RESEARCH ON TOPOLOGICAL OPTIMIZATION DENSITY FILTERING METHOD BASED ON NODAL DENSITY INTERPOLATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2788-2798. DOI: 10.6052/0459-1879-24-108
    [2]Guan Xuexue, Chen Jianqiao, Zheng Yaochen, Zhang Xiaosheng. A COMBINED PARTICLE FILTER METHOD FOR PREDICTING STRUCTURAL PERFORMANCE DEGRADATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 677-687. DOI: 10.6052/0459-1879-18-014
    [3]Li Pan, Hao Zhiming, Zhen Wenqiang. A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 329-338. DOI: 10.6052/0459-1879-17-386
    [4]Quan Hu Jia Yinghong Shijie Xu. An improved kane's method for multibody dynamics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 968-972. DOI: 10.6052/0459-1879-2011-5-lxxb2010-856
    [5]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [6]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
    [7]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940

Catalog

    Article Metrics

    Article views (33) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return