Citation: | Liu Xiaoyu, Zhang Huimei, Yang Zheng, Li Jiangbo. Energy balance size effect model considering the surface strengthening or damage for compressive strength. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 671-686. DOI: 10.6052/0459-1879-24-575 |
[1] |
冯西桥, 余寿文. 准脆性材料细观损伤力学. 北京: 高等教育出版社, 2002 (Feng Xiqiao, Yu Shouwen. Mesoscopic Damage Mechanics of Quasi-Brittle Materials. Beijing: Higher Education Press, 2002 (in Chinese)
Feng Xiqiao, Yu Shouwen. Mesoscopic Damage Mechanics of Quasi-Brittle Materials. Beijing: Higher Education Press, 2002 (in Chinese)
|
[2] |
Masoumi H, Saydam S, Hagan PC. Unified size-effect law for intact rock. International Journal of Geomechanics, 2016, 16(2): 04015059 doi: 10.1061/(ASCE)GM.1943-5622.0000543
|
[3] |
Masoumi H, Saydam S, Hagan PC. Incorporating scale effect into a multiaxial failure criterion for intact rock. International Journal of Rock Mechanics and Mining Science, 2016, 83: 49-56 doi: 10.1016/j.ijrmms.2015.12.013
|
[4] |
Du X, Jin L. Size Effect in Concrete Materials and Structures. Singapore: Springer, 2021
|
[5] |
郭育霞, 赵永辉, 冯国瑞等. 矸石胶结充填体单轴压缩损伤破坏尺寸效应研究. 岩石力学与工程学报, 2021, 40(12): 2434-2444 (Guo Yuxia, Zhao Yonghui, Feng Guorui, et al. Study on damage size effect of gangue cemented backfill under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2434-2444 (in Chinese)
Guo Yuxia, Zhao Yonghui, Feng Guorui, et al. Study on damage size effect of gangue cemented backfill under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(12): 2434-2444 (in Chinese)
|
[6] |
刘宝琛, 张家生, 杜奇中等. 岩石抗压强度的尺寸效应. 岩石力学与工程学报, 1998, 17(6): 611-614 (Liu Baochen, Zhang Jiasheng, Du Qizhong, et al. Size effect of rock compressive strength. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614 (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.06.001
Liu Baochen, Zhang Jiasheng, Du Qizhong, et al. Size effect of rock compressive strength. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 611-614 (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.06.001
|
[7] |
张后全, 徐建峰, 贺永年等. 灰岩单轴压缩实验室尺度效应研究. 岩石力学与工程学报, 2012, 31(S2): 3491-3496 (Zhang Houquan, Xu Jianfeng, He Yongnian, et a. Study of laboratory scale effect of limestone under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3491-3496 (in Chinese)
Zhang Houquan, Xu Jianfeng, He Yongnian, et a. Study of laboratory scale effect of limestone under uniaxial compression. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3491-3496 (in Chinese)
|
[8] |
程爱平, 戴顺意, 张玉山等. 胶结充填体损伤演化尺寸效应研究. 岩石力学与工程学报, 2019, 38(S1): 3054-3059 (Cheng Aiping, Dai Shunyi, Zhang Yushan, et al. Study on size effect of damage evolution of cemented backfill. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3054-3059 (in Chinese)
Cheng Aiping, Dai Shunyi, Zhang Yushan, et al. Study on size effect of damage evolution of cemented backfill. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3054-3059 (in Chinese)
|
[9] |
Zhai H, Masoumi H, Zoorabadi M, et al. Size-dependent behaviour of weak intact rocks. Rock Mechanics and Rock Engineering, 2020, 53(8): 3563-3587 doi: 10.1007/s00603-020-02117-z
|
[10] |
Nishimatsu Y, Yamaguchi U, Motosugi K, et al. The size effect and experimental error of the strength of rocks. Journal of Mining and Material Process Institute of Japan, 1969, 18: 1019-1025 (in Japanese
|
[11] |
Hawkins A. Aspects of rock strength. Bulletin of Engineering Geology and the Environment, 1998, 57(1): 17-30 doi: 10.1007/s100640050017
|
[12] |
Masoumi H. Investigation into the mechanical behaviour of intact rock at different sizes. [PhD Thesis]. Sydney: University of New South Wales, 2013
|
[13] |
Quinones J, Arzúa J, Alejano L, et al. Analysis of size effects on the geomechanical parameters of intact granite samples under unconfined conditions. Acta Geotechnica, 2017, 12(6): 1229-1242 doi: 10.1007/s11440-017-0531-7
|
[14] |
Faramarzi L, Rezaee H. Testing the effects of sample and grain sizes on mechanical properties of concrete. Journal of Materials in Civil Engineering, 2018, 30(5): 04018065
|
[15] |
Ferro G, Carpinteri A. Effect of specimen size on the dissipated energy density in compression. Journal of Applied Mechanics, 2008, 75(4): 041003
|
[16] |
Pérez-Rey I, Muñoz-Ibáñez A, González-Fernández MA, et al. Size effects on the tensile strength and fracture toughness of granitic rock in different tests. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(9): 2179-2192
|
[17] |
路新景, 李志敬, 房后国等. 岩石单轴抗压强度优势尺寸及尺寸效应. 人民黄河, 2011, 33(4): 107-109 (Lu Xinjing, Li Zhijing, Fang Houguo, et al. Dominant size and size effect of uniaxial compressive strength of rock. Yellow River, 2011, 33(4): 107-109 (in Chinese)
Lu Xinjing, Li Zhijing, Fang Houguo, et al. Dominant size and size effect of uniaxial compressive strength of rock. Yellow River, 2011, 33(4): 107-109 (in Chinese)
|
[18] |
白以龙. 非均匀介质的通常和反常尺寸效应. 国家自然科学基金委面上项目, 2009 (Bai Yilong. Normal and anomalous size effects of heterogeneous media. Final Report to NNSFC, 2009 (in Chinese)
Bai Yilong. Normal and anomalous size effects of heterogeneous media. Final Report to NNSFC, 2009 (in Chinese)
|
[19] |
伍法权, 乔磊, 管圣功等. 小尺寸岩样单轴压缩试验尺寸效应研究. 岩石力学与工程学报, 2021, 40(5): 856-873 (Wu Faquan, Qiao lei, Guan shenggong, et al. Study on size effect of uniaxial compression tests of small size rock samples. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 856-873 (in Chinese)
Wu Faquan, Qiao lei, Guan shenggong, et al. Study on size effect of uniaxial compression tests of small size rock samples. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 856-873 (in Chinese)
|
[20] |
Kong X, Liu Q, Lu H. Effects of rock specimen size on mechanical properties in laboratory testing. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(5): 04021013 doi: 10.1061/(ASCE)GT.1943-5606.0002478
|
[21] |
Sinha S, Walton G, Chaurasia A, et al. Evaluating size effects for a porous, weak, homogeneous limestone. Rock Mechanics and Rock Engineering, 2023, 56: 3755-3772
|
[22] |
Pan R, Song X, He W, et al. Direct shear strength of UHPC considering size effect: Theoretical model and experimental verification. Journal of Building Engineering, 2023, 71: 106381 doi: 10.1016/j.jobe.2023.106381
|
[23] |
刘丹, 黄曼, 洪陈杰等. 基于代表性取样的节理岩体抗压强度尺寸效应试验研究. 岩石力学与工程学报, 2021, 40(4): 766-776 (Liu Dan, Huang Man, Hong Chenjie, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776 (in Chinese)
Liu Dan, Huang Man, Hong Chenjie, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776 (in Chinese)
|
[24] |
田永超, 何璠, 殷源. 基于3D打印和FDEM算法的层状岩体力学特性研究. 岩石力学与工程学报, 2023, 42(S1): 3331-3343 (Tian Yongchao, He Fan, Yin Yuan. Study on mechanical properties of layered rock mass using 3D printing and FDEM algorithm. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3331-3343 (in Chinese)
Tian Yongchao, He Fan, Yin Yuan. Study on mechanical properties of layered rock mass using 3D printing and FDEM algorithm. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(S1): 3331-3343 (in Chinese)
|
[25] |
罗战友, 黄斌, 杜时贵等. 基于形貌全覆盖的岩石结构面抗剪强度尺寸效应试验研究. 岩石力学与工程学报, 2024, 43(2): 287-297 (Luo Zhanyou, Huang Bin, Du Shigui, et al. Experimental study on the size effect of shear strength of rock structural plane based on full topography. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2): 287-297 (in Chinese)
Luo Zhanyou, Huang Bin, Du Shigui, et al. Experimental study on the size effect of shear strength of rock structural plane based on full topography. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(2): 287-297 (in Chinese)
|
[26] |
Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, 1921, 221(2): 163-198
|
[27] |
Carpinteri A, Cornetti P, Puzzi S. Scaling laws and multiscale approach in the mechanics of heterogeneous and disordered materials. Applied Mechanics Reviews, 2006, 59(5): 283-305 doi: 10.1115/1.2204076
|
[28] |
Wang JH, Jia JN, Sun S, et al. Statistical learning of small data with domain knowledge-sample size- and pre-notch length-dependent strength of concrete. Engineering Fracture Mechanics, 2022, 259: 108160 doi: 10.1016/j.engfracmech.2021.108160
|
[29] |
Lei WS, Qian G, Yu Z, et al. Statistical size scaling of compressive strength of quasi-brittle materials incorporating specimen length-to-diameter ratio effect. Theoretical and Applied Fracture Mechanics, 2019, 104: 102345
|
[30] |
Alava MJ, Nukala PKVV, Zapperi S. Size effects in statistical fracture. Journal of Physics D: Applied Physics, 2009, 42(21): 214012 doi: 10.1088/0022-3727/42/21/214012
|
[31] |
Bažant ZP. Size effect. International Journal of Solids and Structures, 2000, 37(1): 69-80
|
[32] |
Vu CC, Weiss J, Ple O, et al. Revisiting statistical size effects on compressive failure of heterogeneous materials, with a special focus on concrete. Journal of the Mechanics and Physics of Solids, 2018, 121: 47-70 doi: 10.1016/j.jmps.2018.07.022
|
[33] |
Mastilovic S, Djordjevic B, Sedmak A. A scaling approach to size effect modeling of Jc CDF for 20MnMoNi55 reactor steel in transition temperature region. Engineering Failure Analysis, 2022, 131: 105838 doi: 10.1016/j.engfailanal.2021.105838
|
[34] |
Dyskin AV, Vliet MRAV, Mier JGMV. Size effect in tensile strength caused by stress fluctuations. International Journal of Fracture, 2001, 108(1): 43-61 doi: 10.1023/A:1007665018241
|
[35] |
Van Vliet MRA, Van Mier JGM. Effect of strain gradients on the size effect of concrete in uniaxial tension. International Journal of Fracture, 1999, 95(1): 195-219
|
[36] |
Bažant ZP. Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics, 1984, 110(4): 518-535 doi: 10.1061/(ASCE)0733-9399(1984)110:4(518)
|
[37] |
Leicester R. The size effect of notches//Proceedings of the second Australasian Conference on Mechanics of Materials and Structures. Melbourne. 1969: 1-20
|
[38] |
Sun Y, Xiang Z. A nondimensional framework for size dependent quasi-brittle fracture criteria. Engineering Fracture Mechanics, 2020, 236: 107220 doi: 10.1016/j.engfracmech.2020.107220
|
[39] |
Taylor D. The theory of critical distances. Engineering Fracture Mechanics, 2008, 75(7): 1696-1705 doi: 10.1016/j.engfracmech.2007.04.007
|
[40] |
Carpinteri A, Cornetti P, Barpi F, et al. Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs. renormalization group theory. Engineering Fracture Mechanics, 2003, 70(14): 1809-1839 doi: 10.1016/S0013-7944(03)00126-7
|
[41] |
Carpinteri A. Notch sensitivity in fracture testing of aggregative materials. Engineering Fracture Mechanics, 1982, 16(4): 467-481 doi: 10.1016/0013-7944(82)90127-8
|
[42] |
Carpinteri A. Scaling laws and renormalization groups for strength and toughness of disordered materials. International Journal of Solids & Structures, 1994, 31(3): 291-302
|
[43] |
Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties. Mechanics of Materials, 1994, 18(2): 89-101 doi: 10.1016/0167-6636(94)00008-5
|
[44] |
Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: multifractality of material ligaments and dimensional transition from order to disorder. Materials & Structures, 1995, 28(6): 311-317
|
[45] |
Bažant ZP. Scaling of quasibrittle fracture: asymptotic analysis. International Journal of Fracture, 1997, 83(1): 19-40 doi: 10.1023/A:1007387823522
|
[46] |
Hu X, Wittmann F. Size effect on toughness induced by crack close to free surface. Engineering Fracture Mechanics, 2000, 65(2): 209-221
|
[47] |
Hu X, Guan J, Wang Y, et al. Comparison of boundary and size effect models based on new developments. Engineering Fracture Mechanics, 2017, 175: 146-167 doi: 10.1016/j.engfracmech.2017.02.005
|
[48] |
Chen Y, Hu X. On interchangeability and selection of size effect and boundary effect experiments for characterization and prediction of quasi-brittle fracture of concrete. Theoretical and Applied Fracture Mechanics, 2022, 122: 103629 doi: 10.1016/j.tafmec.2022.103629
|
[49] |
Hu X, Li Q, Wu Z, et al. Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics. Engineering Fracture Mechanics, 2022, 259: 108158 doi: 10.1016/j.engfracmech.2021.108158
|
[50] |
Karihaloo BL. Size effect in shallow and deep notched quasi-brittle structures. International Journal of Fracture, 1999, 95(1): 379-390
|
[51] |
Feng DC, Wu JY. Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018, 197: 66-79 doi: 10.1016/j.engfracmech.2018.04.038
|
[52] |
Wu JY, Yao JR. A model scaling approach for fracture and size effect simulations in solids: Cohesive zone, smeared crack band and phase-field models. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115519 doi: 10.1016/j.cma.2022.115519
|
[53] |
梁正召, 张永彬, 唐世斌等. 岩体尺寸效应及其特征参数计算. 岩石力学与工程学报, 2013, 32(6): 1157-1166 (Liang Zhengzhao, Zhang Yongbin, Tang Shibin, et al. Size effect of rock messes and associated representative element properties. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1157-1166 (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.06.009
Liang Zhengzhao, Zhang Yongbin, Tang Shibin, et al. Size effect of rock messes and associated representative element properties. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1157-1166 (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.06.009
|
[54] |
Bažant ZP. Scaling of quasibrittle fracture: Hypotheses of invasive and lacunar fractality, their critique and weibull connection. International Journal of Fracture, 1997, 83(1): 41-65 doi: 10.1023/A:1007335506684
|
[55] |
Masoumi H, Arefi A, Hagan P, et al. An improvement to unified size effect law for intact rock//51st US Rock Mechanics/Geomechanics Symposium. San Francisco, USA. 2017
|
[56] |
Hoskins JR, Horino FG. Influence of spherical head size and specimen diameters on the uniaxial compressive strength of rocks. Washington, DC: US Department of the Interior, Bureau of Mines, 1969
|
[57] |
Vutukuri VS, Lama RD, Saluja SS. Handbook on Mechanical Properties of Rocks. Clausthal, Germany: Trans Tech Publications, 1974
|
[58] |
Bahrani N, Kaiser PK. Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks. Computers and Geotechnics, 2016, 77: 56-67 doi: 10.1016/j.compgeo.2016.04.004
|
[59] |
Liang Z, Wu N, Li Y, et al. Numerical study on anisotropy of the representative elementary volume of strength and deformability of jointed rock masses. Rock Mechanics and Rock Engineering, 2019, 52(11): 4387-4402 doi: 10.1007/s00603-019-01859-9
|
[60] |
González-Fernández MA, Estévez-Ventosa X, Alejano LR, et al. Size-dependent behaviour of hard rock under triaxial loading. Rock Mechanics and Rock Engineering, 2023, 56(8): 6009-6025 doi: 10.1007/s00603-023-03367-3
|
[61] |
王兆远. 单轴压缩条件下岩石强度尺寸效应与声发射试验研究. [硕士论文]. 绍兴: 绍兴文理学院, 2022 (Wang Zhaoyuan. Experimental study on size effect of rock strength and acoustic emission under uniaxial compression. [Master Thesis]. Shaoxing: Shaoxing University, 2022 (in Chinese)
Wang Zhaoyuan. Experimental study on size effect of rock strength and acoustic emission under uniaxial compression. [Master Thesis]. Shaoxing: Shaoxing University, 2022 (in Chinese)
|
[62] |
陈银红, 伍法权, 乔磊等. 小尺寸岩样尺寸效应特性研究. 工程地质学报, 2023, 31(2): 460-468 (Chen Yinhong, Wu Faquan, Qiao Lei, et al. Study on size effect characteristics of small size rock samples. Journal of Engineering Geology, 2023, 31(2): 460-468 (in Chinese)
Chen Yinhong, Wu Faquan, Qiao Lei, et al. Study on size effect characteristics of small size rock samples. Journal of Engineering Geology, 2023, 31(2): 460-468 (in Chinese)
|
[63] |
Vořechovský M. Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics. International Journal of Solids and Structures, 2007, 44(9): 2715-2731 doi: 10.1016/j.ijsolstr.2006.08.019
|
[64] |
Andrianopoulos NP, Manolopoulos VM, Dernikas IT. Failure criteria: Old wines in new bottles? Theoretical and Applied Fracture Mechanics, 2014, 71: 79-84
|
[65] |
Chen L, Cao T, Wei R, et al. Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys. Materials Science and Engineering: A, 2020, 772: 138661 doi: 10.1016/j.msea.2019.138661
|
[66] |
Fang TH, Li WL, Tao NR, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, 2011, 331(6024): 1587-1590 doi: 10.1126/science.1200177
|
[67] |
Liu W, Wu G, Zhai C, et al. Grain refinement and fatigue strengthening mechanisms in as-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr magnesium alloys by shot peening. International Journal of Plasticity, 2013, 49: 16-35
|
[68] |
Ren CX, Wang Q, Zhang ZJ, et al. Surface strengthening behaviors of four structural steels processed by surface spinning strengthening. Materials Science and Engineering: A, 2017, 704: 262-273 doi: 10.1016/j.msea.2017.08.007
|
[69] |
Zou XW, Han WZ, Ma E. Uncovering the intrinsic high fracture toughness of titanium via lowered oxygen impurity content. Advanced Materials, 2024, 36(40): 2408286
|
[70] |
蔡绍怀. 我国钢管混凝土结构技术的最新进展. 土木工程学报, 1999, 4: 16-26 (Cai Shaohuai. The latest development of concrete-filled steel tubular structure technology in China. China Civil Engineering Journal, 1999, 4: 16-26 (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.04.003
Cai Shaohuai. The latest development of concrete-filled steel tubular structure technology in China. China Civil Engineering Journal, 1999, 4: 16-26 (in Chinese) doi: 10.3321/j.issn:1000-131X.1999.04.003
|
[71] |
陆新征, 冯鹏, 叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析. 土木工程学报, 2003, 2: 46-51 (Lu Xinzheng, Feng Peng, Ye Lieping. Finite element analysis of axially compressed concrete square columns confined with FRP sheets. China Civil Engineering Journal, 2003, 2: 46-51 (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009
Lu Xinzheng, Feng Peng, Ye Lieping. Finite element analysis of axially compressed concrete square columns confined with FRP sheets. China Civil Engineering Journal, 2003, 2: 46-51 (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009
|
[72] |
金浏, 樊玲玲, 杜修力等. 圆钢管混凝土柱轴压破坏行为与尺寸效应理论研究. 中国科学: 技术科学, 2020, 50(2): 209-220 (Jin Liu, Fan Lingling, Du Xiuli, et al. Theoretical study on axial compression failure behavior and size effect of circular concrete-filled steel tubular columns. Science China: Technological Sciences, 2020, 50(2): 209-220 (in Chinese)
Jin Liu, Fan Lingling, Du Xiuli, et al. Theoretical study on axial compression failure behavior and size effect of circular concrete-filled steel tubular columns. Science China: Technological Sciences, 2020, 50(2): 209-220 (in Chinese)
|
[73] |
Liang J, Li P, Jin L, et al. Influences of structural size and confinement effect on the axial compressive behavior of SCFST columns. Structures, 2024, 61: 106077 doi: 10.1016/j.istruc.2024.106077
|
[74] |
Zhou J, Bi F, Wang Z, et al. Experimental investigation of size effect on mechanical properties of carbon fiber reinforced polymer (CFRP) confined concrete circular specimens. Construction and Building Materials, 2016, 127: 643-652 doi: 10.1016/j.conbuildmat.2016.10.039
|
[75] |
谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 2005, 24(17): 3003-3010 (Xie Heping, JU Yang, Li Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010 (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.001
Xie Heping, JU Yang, Li Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010 (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.001
|
[76] |
张志镇. 岩石变形破坏过程中的能量演化机制. [博士论文]. 北京: 中国矿业大学, 2013 (Zhang Zhizhen. Energy evolution mechanism during rock deformation and failure. [PhD Thesis]. Beijing: China University of Mining and Technology, 2013 (in Chinese)
Zhang Zhizhen. Energy evolution mechanism during rock deformation and failure. [PhD Thesis]. Beijing: China University of Mining and Technology, 2013 (in Chinese)
|
[77] |
Huang D, Li Y. Conversion of strain energy in triaxial unloading tests on marble. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 160-168 doi: 10.1016/j.ijrmms.2013.12.001
|
[78] |
宫凤强, 罗松, 李夕兵等. 红砂岩张拉破坏过程中的线性储能和耗能规律. 岩石力学与工程学报, 2018, 37(2): 352-363 (Gong Fengqiang, Luo Song, Li Xibing, et al. Linear energy storage and dissipation rule of red sandstone materials during the tensile failure process. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 352-363 (in Chinese)
Gong Fengqiang, Luo Song, Li Xibing, et al. Linear energy storage and dissipation rule of red sandstone materials during the tensile failure process. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 352-363 (in Chinese)
|
[79] |
刘小宇, 杨政, 张慧梅. 准脆性材料抗压强度能量平衡尺寸效应模型. 力学学报, 2022, 54(6): 1-17 (Liu Xiaoyu, Yang Zheng, Zhang Huimei. Energy balance size effect model of compressive strength for quasi-brittle materials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1-17 (in Chinese) doi: 10.6052/0459-1879-21-460
Liu Xiaoyu, Yang Zheng, Zhang Huimei. Energy balance size effect model of compressive strength for quasi-brittle materials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1-17 (in Chinese) doi: 10.6052/0459-1879-21-460
|
[80] |
刘小宇, 张慧梅, 杨政. 考虑局部损伤区变化的能量平衡尺寸效应模型. 力学学报, 2024, 56(1): 157-172 (Liu Xiaoyu, Zhang Huimei, Yang Zheng. Energy balance size effect model considering the variation of local damage zone. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 157-172 (in Chinese) doi: 10.6052/0459-1879-23-200
Liu Xiaoyu, Zhang Huimei, Yang Zheng. Energy balance size effect model considering the variation of local damage zone. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 157-172 (in Chinese) doi: 10.6052/0459-1879-23-200
|
[81] |
Zhou X, Zhou H, Li X, et al. Size effects on tensile and compressive strengths in metallic glass nanowires. Journal of the Mechanics and Physics of Solids, 2015, 84: 130-144 doi: 10.1016/j.jmps.2015.07.018
|
[82] |
Zhang W, Wang T, Chen X. Effect of surface stress on the asymmetric yield strength of nanowires. Journal of Applied Physics, 2008, 103 (12): 123527
|
[83] |
Li QJ, Xu B, Hara S, et al. Sample-size-dependent surface dislocation nucleation in nanoscale crystals. Acta Materialia, 2018, 145: 19-29 doi: 10.1016/j.actamat.2017.11.048
|
[84] |
Guan J, Liu L, Yao X, et al. Study on the strength size effect of wastewater concrete under freeze-thaw cycles. Construction and Building Materials, 2024, 438: 137074 doi: 10.1016/j.conbuildmat.2024.137074
|
[85] |
Liu X, Zheng Y. Evaluation of several multiaxial failure criteria for concrete after freeze-thaw (F-T) cycles. Construction and Building Materials, 2017, 142: 233-247 doi: 10.1016/j.conbuildmat.2017.03.044
|
[86] |
张常光, 高本贤, 周渭等. 冻融循环和不均匀冻胀下寒区隧道的塑性解答. 力学学报, 2022, 54(1): 252-262 (Zhang Changguang, Gao Benxian, Zhou Wei, et al. Plastic solutions for tunnels in cold regions under freeze-thaw cycles and uneven frost heave. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 252-262 (in Chinese) doi: 10.6052/0459-1879-21-401
Zhang Changguang, Gao Benxian, Zhou Wei, et al. Plastic solutions for tunnels in cold regions under freeze-thaw cycles and uneven frost heave. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 252-262 (in Chinese) doi: 10.6052/0459-1879-21-401
|
[87] |
Zhang HY, Jiang WA, Wu B. Size effect of compressive performance of concrete under elevated temperatures: Tests and meso-scale analysis. Journal of Building Engineering, 2024, 90: 109449 doi: 10.1016/j.jobe.2024.109449
|
[88] |
周湛学, 舒运强. 图解机械零件精度测量及实例. 北京: 化学工业出版社, 2009 (Zhou Zhanxue, Shu Yunqiang. Graphic Illustration of Precision Measurement for Mechanical Parts and Practical Examples. Beijing: Chemical Industry Press, 2009 (in Chinese)
Zhou Zhanxue, Shu Yunqiang. Graphic Illustration of Precision Measurement for Mechanical Parts and Practical Examples. Beijing: Chemical Industry Press, 2009 (in Chinese)
|
[89] |
周宏林. 不同加工方法的tp曲线的分析比较. 机械制造, 2004, 8: 57-58 (Zhou Honglin. Analysis and comparison of tp curves for different machining methods. Machinery Manufacturing, 2004, 8: 57-58 (in Chinese) doi: 10.3969/j.issn.1000-4998.2004.08.020
Zhou Honglin. Analysis and comparison of tp curves for different machining methods. Machinery Manufacturing, 2004, 8: 57-58 (in Chinese) doi: 10.3969/j.issn.1000-4998.2004.08.020
|
[90] |
Roach AM, White BC, Garland A, et al. Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel. Additive Manufacturing, 2020, 32: 101090 doi: 10.1016/j.addma.2020.101090
|
[91] |
Olugbade TO, Lu J. Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT). Nano Materials Science, 2020, 2(1): 3-31 doi: 10.1016/j.nanoms.2020.04.002
|
[92] |
刘慧, 杨更社, 申艳军等. 冻融–受荷协同作用下砂岩细观损伤演化CT可视化定量表征. 岩石力学与工程学报, 2023, 42(5): 1136-1149 (Liu Hui, Yang Gengshe, Shen Yanjun, et al. CT-based quantitative visualization of mesoscopic damage evolution in sandstone under synergistic action of freeze-thaw cycles and loading. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1136-1149 (in Chinese)
Liu Hui, Yang Gengshe, Shen Yanjun, et al. CT-based quantitative visualization of mesoscopic damage evolution in sandstone under synergistic action of freeze-thaw cycles and loading. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1136-1149 (in Chinese)
|
[93] |
Xiao J, Li W, Corr DJ, et al. Effects of interfacial transition zones on the stress-strain behavior of modeled recycled aggregate concrete. Cement and Concrete Research, 2013, 52: 82-99 doi: 10.1016/j.cemconres.2013.05.004
|
[94] |
Suchorzewski J, Nitka M. Size effect at aggregate level in microCT scans and DEM simulation—Splitting tensile test of concrete. Engineering Fracture Mechanics, 2022, 264: 108357 doi: 10.1016/j.engfracmech.2022.108357
|
[95] |
Healy D, Rizzo RE, Cornwell DG, et al. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns. Journal of Structural Geology, 2017, 95: 1-16 doi: 10.1016/j.jsg.2016.12.003
|
[96] |
Nix WD, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425 doi: 10.1016/S0022-5096(97)00086-0
|
[97] |
黄曼, 刘海俊, 洪陈杰等. 考虑压痕尺寸效应的岩石矿物摩擦特性研究. 岩石力学与工程学报, 2024, 43(6): 1371-1382 (Huang Man, Liu Haijun, Hong Chenjie, et al. Study on friction characteristics of rock minerals considering indentation size effect. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1371-1382 (in Chinese)
Huang Man, Liu Haijun, Hong Chenjie, et al. Study on friction characteristics of rock minerals considering indentation size effect. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(6): 1371-1382 (in Chinese)
|
[98] |
Alejano LR, Walton G, Gaines S. Residual strength of granitic rocks. Tunnelling and Underground Space Technology, 2021, 118: 104189 doi: 10.1016/j.tust.2021.104189
|
[99] |
Song X. Research on structure effect and size effect of mechanical parameters of fractured rock mass. [PhD Thesis]. Taiyuan: Taiyuan University of Technology, 2021
|
[100] |
Zhang JZ, Zhou XP. Fracture process zone (FPZ) in quasi-brittle materials: Review and new insights from flawed granite subjected to uniaxial stress. Engineering Fracture Mechanics, 2022, 274: 108795 doi: 10.1016/j.engfracmech.2022.108795
|
[101] |
Hoover CG, Bažant ZP, Vorel J, et al. Comprehensive concrete fracture tests: description and results. Engineering Fracture Mechanics, 2013, 114: 92-103 doi: 10.1016/j.engfracmech.2013.08.007
|
[102] |
Guan J, Hu X, Yao X, et al. Fracture of 0.1 and 2 m long mortar beams under three-point-bending. Materials & Design, 2017, 133: 363-375
|
[103] |
Aliha M, Ayatollahi M, Smith D, et al. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 2010, 77(11): 2200-2212 doi: 10.1016/j.engfracmech.2010.03.009
|
[104] |
Ayatollahi M, Akbardoost J. Size effects in mode II brittle fracture of rocks. Engineering Fracture Mechanics, 2013, 112: 165-180
|
[105] |
Barbat GB, Cervera M, Chiumenti M, et al. Structural size effect: Experimental, theoretical and accurate computational assessment. Engineering Structures, 2020, 213: 110555 doi: 10.1016/j.engstruct.2020.110555
|
[106] |
Bieniawski ZT. The effect of specimen size on compressive strength of coal. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1968, 5(4): 325-335
|
[107] |
Huang H, Shen J, Chen Q, et al. Estimation of REV for fractured rock masses based on geological strength index. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104179 doi: 10.1016/j.ijrmms.2019.104179
|
[108] |
Li K, Cheng Y, Fan X. Roles of model size and particle size distribution on macro-mechanical properties of Lac du bonnet granite using flat-joint model. Computers and Geotechnics, 2018, 103: 43-60 doi: 10.1016/j.compgeo.2018.07.007
|
[109] |
Weiss J, Girard L, Gimbert F, et al. Finite statistical size effects on compressive strength. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6231-6236
|
[110] |
Bazant ZP, Xi Y. Statistical size effect in quasi-brittle structures: II. Nonlocal theory. Journal of Engineering Mechanics, 1991, 117 (11): 2623-2640
|
[111] |
姚寅. 非局部连续介质力学中的若干问题分析. [博士论文]. 南京: 南京航空航天大学, 2010 (Yao Yin. Analysis of serveral problems in nonlocal continuum mechanics. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese)
Yao Yin. Analysis of serveral problems in nonlocal continuum mechanics. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese)
|
[112] |
Chen W, Xia L, Yao Y. An investigation on the evolution of strain localization zone in metallic materials based on tensile tests and a 1-D nonlocal model. Journal of Mechanics, 2023, 39(1): 292-308
|
[1] | Chen Xiang, Huang Zhengxiong, Lu Sheng. SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT NiTi ALLOY CONSIDERING GRAIN SIZE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 116-135. DOI: 10.6052/0459-1879-24-421 |
[2] | Liu Xiaoyu, Zhang Huimei, Yang Zheng. ENERGY BALANCE SIZE EFFECT MODEL CONSIDERING THE VARIATION OF LOCAL DAMAGE ZONE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 157-172. DOI: 10.6052/0459-1879-23-200 |
[3] | Liu Xiaoyu, Yang Zheng, Zhang Huimei. ENERGY BALANCE SIZE EFFECT MODEL OF COMPRESSIVE STRENGTH FOR QUASI-BRITTLE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1613-1629. DOI: 10.6052/0459-1879-21-460 |
[4] | Wang Enliang, Tian Yu, Liu Xingchao, Ren Zhifeng, Hu Shengbo, Yu Jun, Liu Chengqian, Li Yu’ang. PREDICTION MODEL OF COMPRESSIVE STRENGTH OF ULTRA LOW TEMPERATURE FROZEN SOIL BASED ON WOA-BP NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1145-1153. DOI: 10.6052/0459-1879-21-502 |
[5] | Wang Shuai, Yao Yin, Yang Yazheng, Chen Shaohua. SIZE EFFECT OF THE INTERFACE ENERGY DENSITY IN BI-NANO-SCALED-METALLIC PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 978-984. DOI: 10.6052/0459-1879-17-142 |
[6] | Zhang Weihong, Duan Wendong, Xu Yingjie, Zhu Jihong. PREDICTIONS OF EFFECTIVE OUT-PLANE SHEAR MODULUS AND SIZE EFFECT OF HEXAGONAL HONEYCOMB[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 288-292. DOI: 10.6052/0459-1879-12-073 |
[7] | Jun Yan, Ling Liu, Xiaofeng Liu, Jiadong Deng. Concurrent hierarchical optimization for structures composed of modules considering size effects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 268-274. DOI: 10.6052/0459-1879-2010-2-2008-694 |
[8] | Qijian He, Hongwei Song, Chengguang Huang. A fractal study on meso structures and size effect of metallic foams[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 370-375. DOI: 10.6052/0459-1879-2009-3-2008-034 |
[9] | Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329 |
[10] | Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240 |