Citation: | Xiang Pengyu, Zhang Yi, Jiang Zichao, Yao Qinghe. A decoupled structure-preserving scheme for the incompressible ideal MHD system. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1372-1381. DOI: 10.6052/0459-1879-24-548 |
[1] |
Gerbeau JF, Bris C, Lelièvre T. Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Clarendon Press, 2006
|
[2] |
蒋子超, 江俊扬, 孙哲等. 面向大规模并行的全隐式托卡马克MHD数值模拟. 中山大学学报(自然科学版), 2021, 60(6): 9-14 (Jiang Zichao, Jiang Junyang, Sun Zhe, et al. Large-scale parallel simulation of MHD in Tokamak based on a fully implicit method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(6): 9-14 (in Chinese)
Jiang Zichao, Jiang Junyang, Sun Zhe, et al. Large-scale parallel simulation of MHD in Tokamak based on a fully implicit method. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(6): 9-14 (in Chinese)
|
[3] |
Chen FF. Introduction to Plasma Physics and Controlled Fusion. Plenum Press, 1984
|
[4] |
李建刚. 托卡马克研究的现状及发展. 物理, 2016, 45(2): 88-97 (Li Jiangang. The status and progress of tokamak research. Physics, 2016, 45(2): 88-97 (in Chinese) doi: 10.7693/wl20160203
Li Jiangang. The status and progress of tokamak research. Physics, 2016, 45(2): 88-97 (in Chinese) doi: 10.7693/wl20160203
|
[5] |
Yao Q, Jiang Z, Wang Z, et al. A fully implicit parallel solver for MHD instabilities in a tokamak. Journal of Fusion Energy, 2023, 42(2): 31 doi: 10.1007/s10894-023-00369-5
|
[6] |
Christiansen S, Munthe-Kaas H, Owren B. Topics in structure-preserving discretization. Acta Numerica, 2011, 20: 1-119 doi: 10.1017/S096249291100002X
|
[7] |
Sharma H, Patil M, Woolsey C. A review of structure-preserving numerical methods for engineering applications. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113067 doi: 10.1016/j.cma.2020.113067
|
[8] |
Liu JG, Wang WC. An energy-preserving MAC-Yee scheme for the incompressible MHD equation. Journal of Computational Physics, 2001, 174(1): 12-37 doi: 10.1006/jcph.2001.6772
|
[9] |
Greif C, Li D, Schötzau D, et al. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2840-2855
|
[10] |
Schneebeli A, Schötzau D. Mixed finite elements for incompressible magneto-hydrodynamics. Comptes Rendus Mathematique, 2003, 337(1): 71-74 doi: 10.1016/S1631-073X(03)00256-5
|
[11] |
Hu K, Xu J. Structure-preserving finite element methods for stationary MHD models. Mathematics of Computation, 2019, 88(316): 553-581
|
[12] |
Hu K, Ma Y, Xu J. Stable finite element methods preserving ∇⋅B=0 exactly for MHD models. Numerische Mathematik, 2017, 135(2): 371-396
|
[13] |
Hu K, Lee YJ, Xu J. Helicity-conservative finite element discretization for incompressible MHD systems. Journal of Computational Physics, 2021, 436: 110284 doi: 10.1016/j.jcp.2021.110284
|
[14] |
Gawlik ES, Mullen P, Pavlov D, et al. Geometric, variational discretization of continuum theories. Physica D: Nonlinear Phenomena, 2011, 240(21): 1724-1760 doi: 10.1016/j.physd.2011.07.011
|
[15] |
Gawlik ES, Gay-Balmaz F. A finite element method for MHD that preserves energy, cross-helicity, magnetic helicity, incompressibility, and divB = 0. Journal of Computational Physics, 2022, 450: 110847 doi: 10.1016/j.jcp.2021.110847
|
[16] |
Zhang G, Yang X. Efficient and stable schemes for the magnetohydrodynamic potential model. Communications in Computational Physics, 2021, 30: 771-798 doi: 10.4208/cicp.OA-2020-0113
|
[17] |
Zhang X, Su H. A decoupled, unconditionally energy-stable and structure-preserving finite element scheme for the incompressible MHD equations with magnetic-electric formulation. Computers & Mathematics with Applications, 2023, 146: 45-59
|
[18] |
Zhang X, Ding Q. A decoupled, unconditionally energy stable and charge-conservative finite element method for inductionless magnetohydrodynamic equations. Computers & Mathematics with Applications, 2022, 127: 80-96
|
[19] |
Wang X, Zhang X. Decoupled, linear, unconditionally energy stable and charge-conservative finite element method for an inductionless magnetohydrodynamic phase-field model. Mathematics and Computers in Simulation, 2024, 215: 607-627 doi: 10.1016/j.matcom.2023.08.039
|
[20] |
Palha A, Gerritsma M. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations. Journal of Computational Physics, 2017, 328: 200-220 doi: 10.1016/j.jcp.2016.10.009
|
[21] |
Bellan P M. Fundamentals of Plasma Physics. Cambridge: Cambridge University Press, 2006
|
[22] |
潘勇. 高超声速流场磁场干扰效应数值模拟方法研究. [博士论文]. 南京: 南京航空航天大学, 2007 (Pan Yong. Numerical Methods for Hypersonic Flowfield with Magnetic Interference. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese)
Pan Yong. Numerical Methods for Hypersonic Flowfield with Magnetic Interference. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese)
|
[23] |
Layton W, Manica CC, Neda M, et al. On the accuracy of the rotation form in simulations of the Navier-Stokes equations. Journal of Computational Physics, 2009, 228(9): 3433-3447 doi: 10.1016/j.jcp.2009.01.027
|
[24] |
Zang TA. On the rotation and skew-symmetric forms for incompressible flow simulations. Applied Numerical Mathematics, 1991, 7(1): 27-40 doi: 10.1016/0168-9274(91)90102-6
|
[25] |
Bochev P, Hyman J. Principle of mimetic discretizations of differential operators. Compatible discretizations. Proc. of IMA Hot Topics Workshop on Compatible Discretizations, 2006, 142: 89-120
|
[26] |
Zhang Y, Palha A, Gerritsma M, et al. A MEEVC discretization for two-dimensional incompressible Navier-Stokes equations with general boundary conditions. Journal of Computational Physics, 2024, 510: 113080 doi: 10.1016/j.jcp.2024.113080
|
[27] |
Steinberg S. Mimetic Explicit Time Discretiztions. 2016
|
[28] |
Hairer E, Wanner G. Geometric Numerical Integration. Springer, 2006
|
[29] |
Sanderse B. Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2013, 233: 100-131 doi: 10.1016/j.jcp.2012.07.039
|
[30] |
Hartmann S. A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Computational Mechanics, 2005, 36: 100-116 doi: 10.1007/s00466-004-0630-9
|
[31] |
Gerritsma M. Edge functions for spectral element methods//Spectral and High Order Methods for Partial Differential Equations: Selected papers from the ICOSAHOM’09 conference, June 22-26, Trondheim, Norway. Springer, 2010: 199-207
|
[32] |
Zhang Y. Mimetic spectral element method and extensions toward higher computational efficiency. [PhD Thesis]. Delft University of Technology, 2022
|
[33] |
Kreeft J, Gerritsma M. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution. Journal of Computational Physics, 2013, 240: 284-309 doi: 10.1016/j.jcp.2012.10.043
|