EI、Scopus 收录
中文核心期刊
Qiao Yifei, Qu Yegao, Gao Penglin, Peng Zhike. Nonlinear vibration analysis of a composite pipe conveying fluid with friction interface. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3312-3323. DOI: 10.6052/0459-1879-24-349
Citation: Qiao Yifei, Qu Yegao, Gao Penglin, Peng Zhike. Nonlinear vibration analysis of a composite pipe conveying fluid with friction interface. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3312-3323. DOI: 10.6052/0459-1879-24-349

NONLINEAR VIBRATION ANALYSIS OF A COMPOSITE PIPE CONVEYING FLUID WITH FRICTION INTERFACE

  • Received Date: July 21, 2024
  • Accepted Date: October 16, 2024
  • Available Online: October 16, 2024
  • Published Date: October 17, 2024
  • To solve the fluid-structure interaction dynamics of a composite pipe conveying fluid with friction interface, an axisymmetric semi-analytical finite element method is developed to construct a nonlinear dynamic model. The dynamic equations of fiber-reinforced composite pipe and fluid medium are established based on the Reissner’s thin shell theory and the convected wave equation. A macro-slip friction model is adopted to describe the distribution of nonlinear frictional forces on the friction interface. The effects of fluid load and friction interface on the nonlinear vibration response of the pipe conveying fluid are examined. The results show that the hysteresis loop of points on the friction interface of the composite pipe conveying fluid with friction interface consists of two symmetric stick regions and two symmetric slip regions. The stick-slip transition of the friction interface causes the vibration response of the pipe conveying fluid to contain not only the excitation frequency but also a series of odd-order super-harmonics. As the friction coefficient of the interface increases, the axial vibration amplitude of the pipe conveying fluid at the fundamental frequency decreases while the normal vibration amplitude increases, and both the axial and normal vibration amplitudes of the pipe conveying fluid at the third-order super-harmonic first increase and then decrease. As the friction stiffness of the interface increases, the axial vibration amplitude of the pipe conveying fluid at the fundamental frequency and the third-order super-harmonic first decreases and then increases. The flow velocity mainly affects the normal vibration of the pipe conveying fluid with friction interface and has little impact on the axial vibration of the pipe.
  • [1]
    杜善义. 先进复合材料与航空航天. 复合材料学报, 2007, 24(1): 1-12 (Du Shanyi. Advanced composite materials and aerospace engineering. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001

    Du Shanyi. Advanced composite materials and aerospace engineering. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
    [2]
    Paı̈Doussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures, 1993, 7(2): 137-204 doi: 10.1006/jfls.1993.1011
    [3]
    任建亭, 姜节胜. 输流管道系统振动研究进展. 力学进展, 2003, 33(3): 313-324 (Ren Jianting, Jiang Jiesheng. Advances and trends on vibration of pipes conveying fluid. Advances in Mechanics, 2003, 33(3): 313-324 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.03.003

    Ren Jianting, Jiang Jiesheng. Advances and trends on vibration of pipes conveying fluid. Advances in Mechanics, 2003, 33(3): 313-324 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.03.003
    [4]
    孙诣博, 魏莎, 丁虎等. 基于路径积分法的输液管道随机动态响应分析. 力学学报, 2023, 55(6): 1371-1381 (Sun Yibo, Wei Sha, Ding Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381 (in Chinese) doi: 10.6052/0459-1879-23-032

    Sun Yibo, Wei Sha, Ding Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381 (in Chinese) doi: 10.6052/0459-1879-23-032
    [5]
    邢浩然, 何毅翔, 代胡亮等. 基于绝对节点坐标法的复杂构型输流管道简支支承设计研究. 力学学报, 2024, 56(2): 482-493 (Xing Haoran, He Yixiang, Dai Huliang, et al. Design of simply support for fluid-conveying pipe with complex configurations based on absolute node coordinate formulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 482-493 (in Chinese) doi: 10.6052/0459-1879-23-383

    Xing Haoran, He Yixiang, Dai Huliang, et al. Design of simply support for fluid-conveying pipe with complex configurations based on absolute node coordinate formulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 482-493 (in Chinese) doi: 10.6052/0459-1879-23-383
    [6]
    Sharma CB, Darvizeh M, Darvizeh A. Free vibration response of multilayered orthotropic fluid-filled circular cylindrical shells. Composite Structures, 1996, 34(3): 349-355 doi: 10.1016/0263-8223(96)80008-0
    [7]
    Xi ZC, Yam LH, Leung TP. Free vibration of a partially fluid-filled cross-ply laminated composite circular cylindrical shell. The Journal of the Acoustical Society of America, 1997, 101(2): 909-917 doi: 10.1121/1.418049
    [8]
    Kochupillai J, Ganesan N, Padmanabhan C. A semi-analytical coupled finite element formulation for composite shells conveying fluids. Journal of Sound and Vibration, 2002, 258(2): 287-307 doi: 10.1006/jsvi.2002.5176
    [9]
    Kadoli R, Ganesan N. Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid. Composite Structures, 2003, 60(1): 19-32 doi: 10.1016/S0263-8223(02)00313-6
    [10]
    Toorani MH, Lakis AA. Dynamics behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid. Journal of Sound and Vibration, 2003, 259(2): 265-298 doi: 10.1006/jsvi.2002.5161
    [11]
    Alijani F, Amabili M. Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells. Composite Structures, 2014, 108: 951-962 doi: 10.1016/j.compstruct.2013.10.029
    [12]
    Miramini SM, Ohadi A. Three-dimensional vibration of fluid-conveying laminated composite cylindrical shells with piezoelectric layers. International Journal of Structural Stability and Dynamics, 2019, 19(3): 1950026 doi: 10.1142/S0219455419500263
    [13]
    Zhu H, Wu J. Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method. Acta Mechanica, 2020, 231(9): 3961-3978 doi: 10.1007/s00707-020-02734-3
    [14]
    Guo Y, Zhu B, Li Y. Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub- and super-critical regimes. Appl Math Model, 2022, 101: 632-653 doi: 10.1016/j.apm.2021.09.017
    [15]
    Zhou J, Chang X, Xiong Z, et al. Stability and nonlinear vibration analysis of fluid-conveying composite pipes with elastic boundary conditions. Thin-Walled Structures, 2022, 179: 109597 doi: 10.1016/j.tws.2022.109597
    [16]
    Heshmati M, Daneshmand F, Amini Y. Vibration and stability analysis of functionally graded elliptical pipes conveying fluid with flow velocity profile modification. Engineering with Computers, 2023, 39(2): 1537-1552 doi: 10.1007/s00366-021-01541-1
    [17]
    Chang X, Hong X, Qu C, et al. Stability and nonlinear vibration of carbon nanotubes-reinforced composite pipes conveying fluid. Ocean Engineering, 2023, 281: 114960 doi: 10.1016/j.oceaneng.2023.114960
    [18]
    Yadav A, Amabili M, Panda SK, et al. Instability analysis of fluid-filled angle-ply laminated circular cylindrical shells subjected to harmonic axial loading. European Journal of Mechanics-A/Solids, 2023, 97: 104810 doi: 10.1016/j.euromechsol.2022.104810
    [19]
    Wang Y, Tang Y, Yang T. Nonlinear mechanic analysis of a composite pipe conveying solid-liquid two-phase flow. Applied Ocean Research, 2024, 144: 103905 doi: 10.1016/j.apor.2024.103905
    [20]
    He B, Ouyang H, He S, et al. Dynamic analysis of integrally shrouded group blades with rubbing and impact. Nonlinear Dynamics, 2018, 92(4): 2159-2175 doi: 10.1007/s11071-018-4187-0
    [21]
    Won HI, Chung J. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall. Journal of Sound and Vibration, 2018, 419: 42-62 doi: 10.1016/j.jsv.2017.12.037
    [22]
    Xie F, Qu Y, Guo Q, et al. Nonlinear flutter of composite laminated panels with local non-smooth friction boundaries. Composite Structures, 2019, 223: 110934 doi: 10.1016/j.compstruct.2019.110934
    [23]
    Qu Y, Xie F, Su H, et al. Numerical analysis of stick–slip induced nonlinear vibration and acoustic responses of composite laminated plates with friction boundaries. Composite Structures, 2021, 258: 113316 doi: 10.1016/j.compstruct.2020.113316
    [24]
    Zhang J, Qu Y, Xie F, et al. Investigations on nonlinear aerothermoelastic behaviors of multilayered composite panels subject to frictional boundaries and random acoustic loads in supersonic flow. Thin-Walled Structures, 2021, 158: 107180 doi: 10.1016/j.tws.2020.107180
    [25]
    Tüfekci M, Dear JP, Salles L. Forced vibration analysis of beams with frictional clamps. Appl Math Model, 2024, 128: 450-469 doi: 10.1016/j.apm.2024.01.031
    [26]
    Leissa AW, Nordgren RP. Vibration of Shells. Washington DC: US Government Printing Office, 1973
    [27]
    Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. Florida: CRC Press, 2003
    [28]
    Vinson JR, Sierakowski RL. The Behavior of Structures Composed of Composite Materials. Dordrecht: Kluwer Academic Publishers, 1987
    [29]
    Wang JH, Shieh WL. The influence of a variable friction coefficient on the dynamic behavior of a blade with a friction damper. Journal of Sound and Vibration, 1991, 149(1): 137-145 doi: 10.1016/0022-460X(91)90916-8
    [30]
    Seo YS, Jeong WB, Yoo WS, et al. Frequency response analysis of cylindrical shells conveying fluid using finite element method. Journal of Mechanical Science and Technology, 2005, 19(2): 625-633 doi: 10.1007/BF02916184
    [31]
    Qu Y, Hua H, Meng G. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Composite Structures, 2013, 95: 307-321 doi: 10.1016/j.compstruct.2012.06.022
  • Related Articles

    [1]Jin Dongping. METHOD OF POLYNOMIAL VECTORS FOR NONLINEAR VIBRATION SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2373-2380. DOI: 10.6052/0459-1879-23-331
    [2]Tan Shujun, Hou Jian, Wu Zhigang, Du Jianming. THE PARAMETRIC VARATIONAL PRINCIPLE AND NON-LINEAR FINITE ELEMENT METHOD FOR ANALYSIS OF ASTROMESH ANTENNA STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 770-775. DOI: 10.6052/0459-1879-14-126
    [3]Yun Xu, Jun Chen, Xijun Wei. A new adaptive finite element method for multiscale dynamic simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 722-729. DOI: 10.6052/0459-1879-2009-5-2008-024
    [4]Interval analysis method for response analysis of nonlinear vibration systems with uncertain parameters[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 645-651. DOI: 10.6052/0459-1879-2006-5-2005-361
    [5]Semi-analytical element method for double-K fracture parameters computations in concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 414-418. DOI: 10.6052/0459-1879-2004-4-2003-365
    [6]A NEW METHOD OF IDENTIFYING THE TYPES OF MOTION OF A NONLINEAR CRACKED ROTOR 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 51-57. DOI: 10.6052/0459-1879-1998-1-1995-097
    [7]THE SEMI-ANALYTICAL METHOD BASED ON GURTIN VARIATIONAL PRINCIPLES TO SOLVE DYNAMIC RESPONSE OF ONE DIMENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 708-716. DOI: 10.6052/0459-1879-1992-6-1995-794
    [8]A NEW METHOD OF CALCULATING THE ASYMPTOTIC SOLUTION OF NONLINEAR VIBRATION SYSTEMS——A SIMPLE METHOD OF CALCULATING THECOEFFICIENTS OF NORMAL FORM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(4): 413-419. DOI: 10.6052/0459-1879-1990-4-1995-964
    [9]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
    [10]THE NONLINEAR RESPONSES OF A FORCED TWO-DEGREE-OF-FREEDOM STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 53-59. DOI: 10.6052/0459-1879-1990-1-1995-910

Catalog

    Article Metrics

    Article views (126) PDF downloads (38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return