Citation: | Qiao Yifei, Qu Yegao, Gao Penglin, Peng Zhike. Nonlinear vibration analysis of a composite pipe conveying fluid with friction interface. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3312-3323. DOI: 10.6052/0459-1879-24-349 |
[1] |
杜善义. 先进复合材料与航空航天. 复合材料学报, 2007, 24(1): 1-12 (Du Shanyi. Advanced composite materials and aerospace engineering. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
Du Shanyi. Advanced composite materials and aerospace engineering. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
|
[2] |
Paı̈Doussis MP, Li GX. Pipes conveying fluid: A model dynamical problem. Journal of Fluids and Structures, 1993, 7(2): 137-204 doi: 10.1006/jfls.1993.1011
|
[3] |
任建亭, 姜节胜. 输流管道系统振动研究进展. 力学进展, 2003, 33(3): 313-324 (Ren Jianting, Jiang Jiesheng. Advances and trends on vibration of pipes conveying fluid. Advances in Mechanics, 2003, 33(3): 313-324 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.03.003
Ren Jianting, Jiang Jiesheng. Advances and trends on vibration of pipes conveying fluid. Advances in Mechanics, 2003, 33(3): 313-324 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.03.003
|
[4] |
孙诣博, 魏莎, 丁虎等. 基于路径积分法的输液管道随机动态响应分析. 力学学报, 2023, 55(6): 1371-1381 (Sun Yibo, Wei Sha, Ding Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381 (in Chinese) doi: 10.6052/0459-1879-23-032
Sun Yibo, Wei Sha, Ding Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381 (in Chinese) doi: 10.6052/0459-1879-23-032
|
[5] |
邢浩然, 何毅翔, 代胡亮等. 基于绝对节点坐标法的复杂构型输流管道简支支承设计研究. 力学学报, 2024, 56(2): 482-493 (Xing Haoran, He Yixiang, Dai Huliang, et al. Design of simply support for fluid-conveying pipe with complex configurations based on absolute node coordinate formulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 482-493 (in Chinese) doi: 10.6052/0459-1879-23-383
Xing Haoran, He Yixiang, Dai Huliang, et al. Design of simply support for fluid-conveying pipe with complex configurations based on absolute node coordinate formulation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 482-493 (in Chinese) doi: 10.6052/0459-1879-23-383
|
[6] |
Sharma CB, Darvizeh M, Darvizeh A. Free vibration response of multilayered orthotropic fluid-filled circular cylindrical shells. Composite Structures, 1996, 34(3): 349-355 doi: 10.1016/0263-8223(96)80008-0
|
[7] |
Xi ZC, Yam LH, Leung TP. Free vibration of a partially fluid-filled cross-ply laminated composite circular cylindrical shell. The Journal of the Acoustical Society of America, 1997, 101(2): 909-917 doi: 10.1121/1.418049
|
[8] |
Kochupillai J, Ganesan N, Padmanabhan C. A semi-analytical coupled finite element formulation for composite shells conveying fluids. Journal of Sound and Vibration, 2002, 258(2): 287-307 doi: 10.1006/jsvi.2002.5176
|
[9] |
Kadoli R, Ganesan N. Free vibration and buckling analysis of composite cylindrical shells conveying hot fluid. Composite Structures, 2003, 60(1): 19-32 doi: 10.1016/S0263-8223(02)00313-6
|
[10] |
Toorani MH, Lakis AA. Dynamics behavior of axisymmetric and beam-like anisotropic cylindrical shells conveying fluid. Journal of Sound and Vibration, 2003, 259(2): 265-298 doi: 10.1006/jsvi.2002.5161
|
[11] |
Alijani F, Amabili M. Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells. Composite Structures, 2014, 108: 951-962 doi: 10.1016/j.compstruct.2013.10.029
|
[12] |
Miramini SM, Ohadi A. Three-dimensional vibration of fluid-conveying laminated composite cylindrical shells with piezoelectric layers. International Journal of Structural Stability and Dynamics, 2019, 19(3): 1950026 doi: 10.1142/S0219455419500263
|
[13] |
Zhu H, Wu J. Free vibration of partially fluid-filled or fluid-surrounded composite shells using the dynamic stiffness method. Acta Mechanica, 2020, 231(9): 3961-3978 doi: 10.1007/s00707-020-02734-3
|
[14] |
Guo Y, Zhu B, Li Y. Nonlinear dynamics of fluid-conveying composite pipes subjected to time-varying axial tension in sub- and super-critical regimes. Appl Math Model, 2022, 101: 632-653 doi: 10.1016/j.apm.2021.09.017
|
[15] |
Zhou J, Chang X, Xiong Z, et al. Stability and nonlinear vibration analysis of fluid-conveying composite pipes with elastic boundary conditions. Thin-Walled Structures, 2022, 179: 109597 doi: 10.1016/j.tws.2022.109597
|
[16] |
Heshmati M, Daneshmand F, Amini Y. Vibration and stability analysis of functionally graded elliptical pipes conveying fluid with flow velocity profile modification. Engineering with Computers, 2023, 39(2): 1537-1552 doi: 10.1007/s00366-021-01541-1
|
[17] |
Chang X, Hong X, Qu C, et al. Stability and nonlinear vibration of carbon nanotubes-reinforced composite pipes conveying fluid. Ocean Engineering, 2023, 281: 114960 doi: 10.1016/j.oceaneng.2023.114960
|
[18] |
Yadav A, Amabili M, Panda SK, et al. Instability analysis of fluid-filled angle-ply laminated circular cylindrical shells subjected to harmonic axial loading. European Journal of Mechanics-A/Solids, 2023, 97: 104810 doi: 10.1016/j.euromechsol.2022.104810
|
[19] |
Wang Y, Tang Y, Yang T. Nonlinear mechanic analysis of a composite pipe conveying solid-liquid two-phase flow. Applied Ocean Research, 2024, 144: 103905 doi: 10.1016/j.apor.2024.103905
|
[20] |
He B, Ouyang H, He S, et al. Dynamic analysis of integrally shrouded group blades with rubbing and impact. Nonlinear Dynamics, 2018, 92(4): 2159-2175 doi: 10.1007/s11071-018-4187-0
|
[21] |
Won HI, Chung J. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall. Journal of Sound and Vibration, 2018, 419: 42-62 doi: 10.1016/j.jsv.2017.12.037
|
[22] |
Xie F, Qu Y, Guo Q, et al. Nonlinear flutter of composite laminated panels with local non-smooth friction boundaries. Composite Structures, 2019, 223: 110934 doi: 10.1016/j.compstruct.2019.110934
|
[23] |
Qu Y, Xie F, Su H, et al. Numerical analysis of stick–slip induced nonlinear vibration and acoustic responses of composite laminated plates with friction boundaries. Composite Structures, 2021, 258: 113316 doi: 10.1016/j.compstruct.2020.113316
|
[24] |
Zhang J, Qu Y, Xie F, et al. Investigations on nonlinear aerothermoelastic behaviors of multilayered composite panels subject to frictional boundaries and random acoustic loads in supersonic flow. Thin-Walled Structures, 2021, 158: 107180 doi: 10.1016/j.tws.2020.107180
|
[25] |
Tüfekci M, Dear JP, Salles L. Forced vibration analysis of beams with frictional clamps. Appl Math Model, 2024, 128: 450-469 doi: 10.1016/j.apm.2024.01.031
|
[26] |
Leissa AW, Nordgren RP. Vibration of Shells. Washington DC: US Government Printing Office, 1973
|
[27] |
Reddy JN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd ed. Florida: CRC Press, 2003
|
[28] |
Vinson JR, Sierakowski RL. The Behavior of Structures Composed of Composite Materials. Dordrecht: Kluwer Academic Publishers, 1987
|
[29] |
Wang JH, Shieh WL. The influence of a variable friction coefficient on the dynamic behavior of a blade with a friction damper. Journal of Sound and Vibration, 1991, 149(1): 137-145 doi: 10.1016/0022-460X(91)90916-8
|
[30] |
Seo YS, Jeong WB, Yoo WS, et al. Frequency response analysis of cylindrical shells conveying fluid using finite element method. Journal of Mechanical Science and Technology, 2005, 19(2): 625-633 doi: 10.1007/BF02916184
|
[31] |
Qu Y, Hua H, Meng G. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Composite Structures, 2013, 95: 307-321 doi: 10.1016/j.compstruct.2012.06.022
|