EI、Scopus 收录
中文核心期刊
Meng Xufei, Bai Peng, Liu Chuanzhen. Advantage exploring of variable Mach number waverider in hypersonic wide-speed performances. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3442-3454. DOI: 10.6052/0459-1879-24-342
Citation: Meng Xufei, Bai Peng, Liu Chuanzhen. Advantage exploring of variable Mach number waverider in hypersonic wide-speed performances. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3442-3454. DOI: 10.6052/0459-1879-24-342

ADVANTAGE EXPLORING OF VARIABLE MACH NUMBER WAVERIDER IN HYPERSONIC WIDE-SPEED PERFORMANCES

  • Received Date: July 18, 2024
  • Accepted Date: November 17, 2024
  • Available Online: November 17, 2024
  • Published Date: November 18, 2024
  • The variable Mach number waverider (VMW) is considered to perform well in the wide-speed range during hypersonic stage. However, when scholars compared it with the traditional fixed Mach number waverider (FMW), the constraints of identical planform shape and equal volume were not imposed. Accordingly, the previously illustrated advantages in wide-speed performance were not persuasive. In this paper, the VMW configurations were generated using the planform-customized waverider design method by giving leading-edge profiles. Meanwhile, the FMW configurations with identical planform shapes and equal volumes were also generated, and hence to explore whether the performance advantages of VMW in hypersonic wide-speed range existed. Computational fluid dynamic techniques were employed to analyze flow fields, providing preliminary explanations for the performances. Results showed that compared with the FMW with identical planform shape and equal volume, there were no superior advantages for the lift-to-drag ratios of the VMW in hypersonic wide-speed range. Moreover, the variable Mach number flow fields employed as basis flow fields and therefore the corresponding change of waverider surfaces hardly influenced longitudinal stability when the planform shape was fixed. We guess that the traditional waveriders using fixed Mach number flow fields themselves have satisfactory wide-speed performances in hypersonic stage. Consequently, improvement of the wide-speed performance for waveriders ought to focus on the subsonic, transonic and supersonic stages which dramatically deviate the on-design state, rather than hypersonic stage.
  • [1]
    Zhao ZT, Huang W, Yan L, et al. An overview of research on wide-speed range waverider configuration. Progress in Aerospace Sciences, Progress in Aerospace Sciences, 2020, 113: 100606 doi: 10.1016/j.paerosci.2020.100606
    [2]
    王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究. 中国科学E辑: 技术科学, 2009, 39(11): 1828-1835 (Wang Famin, Ding Haihe, Lei Maifang. Aerodynamic characteristics research on wide-speed range wa-verider configuration. Sci China Ser E-Tech Sci, 2009, 39(11): 1828-1835 (in Chinese)

    Wang Famin, Ding Haihe, Lei Maifang. Aerodynamic characteristics research on wide-speed range wa-verider configuration. Sci China Ser E-Tech Sci, 2009, 39(11): 1828-1835 (in Chinese)
    [3]
    Li SB, Huang W, Wang ZG, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range. Science China, 2014, 57(12): 128-201
    [4]
    Liu Z, Liu J, Ding F, et al. Novel methodology for wide-ranged multistage morphing waverider based on conical theory. Acta Astronautica, 2017, 140: 362-369 doi: 10.1016/j.actaastro.2017.09.006
    [5]
    Phoenix A, Rogers RE, Maxwell JR, et al. Mach five to ten morphing waverider: Control point study. Journal of Aircraft, 2018, 56(2): 1-12
    [6]
    李珺, 易怀喜, 王逗等. 基于投影法的双后掠乘波体气动性能. 航空学报, 2021, 42(12): 124703 (Li Jun, Yi Huaixi, Wang Dou, et al. Aero-dynamic performance of double swept waverider based on projection method. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124703 (in Chinese)

    Li Jun, Yi Huaixi, Wang Dou, et al. Aero-dynamic performance of double swept waverider based on projection method. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124703 (in Chinese)
    [7]
    Liu CZ, Liu Q, Bai P, et al. Planform-customized waverider design integrating with vortex effect. Aerospace Science & Technology, 2019, 86: 438-443
    [8]
    赵振涛, 黄伟, 金宏盛等. 马赫数离散方式对吻切锥变马赫数乘波飞行器构型和气动性能的影响. 航空学报, 2020, 41(12): 124074 (Zhao Zhentao, Huang Wei, Jin Hongsheng, et al. Effects of Mach number discrete method on shape and aero-dynamic performances of osculating cone variable Mach number waverider. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124074 (in Chinese)

    Zhao Zhentao, Huang Wei, Jin Hongsheng, et al. Effects of Mach number discrete method on shape and aero-dynamic performances of osculating cone variable Mach number waverider. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124074 (in Chinese)
    [9]
    Zhang TT, Wang ZG, Huang W, et al. A design approach of wide-speed-range vehicles based on the cone-derived theory. Aerospace Science and Technology, 2017, 71: 42-51 doi: 10.1016/j.ast.2017.09.010
    [10]
    Li SB, Wang ZG, Huang W, et al. Design and investigation on variable Mach number waverider for a wide-speed range. Aerospace Science and Technology, 2018, 76: 291-302 doi: 10.1016/j.ast.2018.01.044
    [11]
    Zhao ZT, Huang Wei, Li SB. Variable Mach number design approach for a parallel waverider with a wide-speed range based on the osculating cone theory. Acta Astronautica, 2018, 147: 163-174 doi: 10.1016/j.actaastro.2018.04.008
    [12]
    Sobieczky H, Dougherty FC, Jones K. Hypersonic waverider design from given shock wave//The First International Waverider Symposium. Maryland: University of Maryland, 1990
    [13]
    Liu J, Liu Z, Wen X, et al. Novel osculating flowfield methodology for wide-speed range waverider vehicles across variable Mach number. Acta Astronautica, 2019, 162: 160-167
    [14]
    Li SB, Li LQ, Huang W, et al. Design and investigation of equal cone-variable Mach number waverider in hypersonic flow. Aerospace Science and Technology, 2020, 96: 105540 doi: 10.1016/j.ast.2019.105540
    [15]
    Liu CZ, Bai P. Mathematical expression of geometric relationship in osculating-cone waverider design. Journal of Aircraft, 2021, 58(4): 1-9
    [16]
    Liu CZ, Bai P, Yang YJ, et al. Double swept waverider from osculating-cone method. Journal of Aerospace Engineering, 2018, 31(6): 212-230
    [17]
    Wang JF, Liu CZ, Bai P, et al. Design methodology of the waverider with a controllable planar shape. Acta Astronautica, 2018, 151: 504-510 doi: 10.1016/j.actaastro.2018.06.048
    [18]
    孟旭飞, 白鹏, 刘传振. 基于可变马赫数锥形流场的定平面形状乘波体设计方法研究. 力学学报, 2023, 55(9): 1809-1819 (Meng Xufei, Bai Peng, Liu Chuanzhen. Research on design method of planform-customized waverider from variable mach number conical flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819 (in Chinese)

    Meng Xufei, Bai Peng, Liu Chuanzhen. Research on design method of planform-customized waverider from variable mach number conical flow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819 (in Chinese)
    [19]
    孟旭飞, 白鹏, 李盾等. 上/下反翼对双后掠乘波体高超特性的影响. 航空学报, 2022, 43(2): 124988 (Meng Xufei, Bai Peng, Li Dun, et al. Effect of dihedral wing on hypersonic stability performance of dou-ble swept waverider. Acta Aeronautica et Astro-nautica Sinica, 2022, 43(2): 124988 (in Chinese)

    Meng Xufei, Bai Peng, Li Dun, et al. Effect of dihedral wing on hypersonic stability performance of dou-ble swept waverider. Acta Aeronautica et Astro-nautica Sinica, 2022, 43(2): 124988 (in Chinese)
    [20]
    Roe PL. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 1981, 43: 357-372 doi: 10.1016/0021-9991(81)90128-5
    [21]
    Krishnan V. On the accuracy of limiters and convergence to steady state solutions. AIAA Paper 93-0880, 1993
    [22]
    Kermani MJ, Plett EG. Modified entropy correction formula for the roe scheme. AIAA Paper 2001-0083, 2001
    [23]
    Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605 doi: 10.2514/3.12149
    [24]
    Chen RF, Wang ZJ. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids. AIAA Journal, 2000, 38(12): 2238-2245 doi: 10.2514/2.914
    [25]
    刘周, 周伟江. 适于黏性计算的自适应笛卡儿网格生成及其应用. 航空学报, 2009, 30(12): 2280-2287 (Liu Zhou, Zhou Weijiang. Adaptive viscous cartesian grid generation and application. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2280-2287 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.12.007

    Liu Zhou, Zhou Weijiang. Adaptive viscous cartesian grid generation and application. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2280-2287 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.12.007
    [26]
    龚安龙, 刘周, 杨云军等. 高超声速激波/边界层干扰流动数值模拟研究. 空气动力学学报, 2014, 32(6): 767-771 (Gong Anlong, Liu Zhou, Yang Yunjun, et al. Numerical study on hypersonic double-cone separated flow. Acta Aerodynamica Sinica, 2014, 32(6): 767-771 (in Chinese)

    Gong Anlong, Liu Zhou, Yang Yunjun, et al. Numerical study on hypersonic double-cone separated flow. Acta Aerodynamica Sinica, 2014, 32(6): 767-771 (in Chinese)
    [27]
    陈冰雁, 徐国武, 刘周等. 真实气体效应试飞器气动布局研究. 力学季刊, 2015, 36(2): 239-248 (Chen Bingyan, Xu Guowu, Liu Zhou, et al. Aerodynamic con-figuration of real gas effect demonstration vehicle. Chinese Quarterly of Mechanics, 2015, 36(2): 239-248 (in Chinese)

    Chen Bingyan, Xu Guowu, Liu Zhou, et al. Aerodynamic con-figuration of real gas effect demonstration vehicle. Chinese Quarterly of Mechanics, 2015, 36(2): 239-248 (in Chinese)
    [28]
    赵弘睿, 龚安龙, 刘周等. 高空侧向喷流干扰效应数值研究. 空气动力学学报, 2020, 38(5): 996-1003 (Zhao Hongrui, Gong Anlong, Liu Zhou, et al. Numerical study of lateral jet intereaction at high altitude. Acta Aerodynamica Sinica, 2020, 38(5): 996-1003 (in Chinese)

    Zhao Hongrui, Gong Anlong, Liu Zhou, et al. Numerical study of lateral jet intereaction at high altitude. Acta Aerodynamica Sinica, 2020, 38(5): 996-1003 (in Chinese)
    [29]
    刘传振, 孟旭飞, 刘荣健等. 双后掠乘波体高超声速试验与数值分析. 航空学报, 2022, 43(9): 126015 (Liu Chuanzhen, Meng Xufei, Liu Rongjian, et al. Experimental and numerical investigation of hypersonic performance of double swept waverider. Acta Aerodynamica Sinica, 2022, 43(9): 126015 (in Chinese)

    Liu Chuanzhen, Meng Xufei, Liu Rongjian, et al. Experimental and numerical investigation of hypersonic performance of double swept waverider. Acta Aerodynamica Sinica, 2022, 43(9): 126015 (in Chinese)
    [30]
    Liu CZ, Meng XF, Liu RJ. Experimental investigation for subsonic, transonic, and supersonic performances of double-swept waverider. AIAA Journal, 2023, 61(10): 4247-4258 doi: 10.2514/1.J062881
    [31]
    He X, Rasmussen ML. Computational analysis of off-design waveriders. Journal of Aircraft, 1994, 31(2): 345-353 doi: 10.2514/3.46493
  • Related Articles

    [1]Qiao Nanxuan, Ma Tielin, Xue Pu, Long Hongrui, Fu Jingcheng. WAVERIDER FAIRING OPTIMIZATION INCORPORATING MULTI-SOURCE MODEL TIME COST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 578-592. DOI: 10.6052/0459-1879-24-580
    [2]Xiang Le, Xu Kaifu, Chen Hui, Tan Yonghua, Li Yumeng, Lin Ronghao. INDUCER CAVITATION INSTABILITIES AND SUPPRESSION ON WIDE OPERATING RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2327-2337. DOI: 10.6052/0459-1879-24-084
    [3]Liu Wen, Guo Shuaiqi, Liu Yang, Wang Famin, Zhang Chen'an. ADVANCES IN DESIGN AND OPTIMIZATION OF WAVERIDER —— FROM HYPERSONIC TO WIDE-SPEED RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1655-1677. DOI: 10.6052/0459-1879-23-589
    [4]Meng Xufei, Bai Peng, Liu Chuanzhen. RESEARCH ON DESIGN METHOD OF PLANFORM-CUSTOMIZED WAVERIDER FROM VARIABLE MACH NUMBER CONICAL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819. DOI: 10.6052/0459-1879-23-123
    [5]Liu Chaoyu, Qu Feng, Li Jieqi, Bai Junqiang, Liu Chuanzhen, Bai Peng, Qian Zhansen. AERODYNAMIC OPTIMIZATION DESIGN OF THE VORTEX-SHOCK INTEGRATED WAVERIDER IN WIDE SPEED RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83. DOI: 10.6052/0459-1879-22-412
    [6]Ren Haijie, Yuan Xianxu, Chen Jianqiang, Sun Dong, Zhu Linyang, Xiang Xinghao. PREDICTION OF REYNOLDS STRESS ANISOTROPIC TENSOR BY NEURAL NETWORK WITHIN WIDE SPEED RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 347-358. DOI: 10.6052/0459-1879-21-518
    [7]Wang Haoxiang, Li Guangli, Yang Jing, Xiao Yao, Wang Xiaoyong, Xu Yingzhou, Xu Xiangui, Cui Kai. NUMERICAL STUDY ON FLOW CHARACTERISTICS OF HIGH-PRESSURE CAPTURING WING CONFIGURATION AT SUBSONIC, TRANSONIC AND SUPERSONIC REGIME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3056-3070. DOI: 10.6052/0459-1879-21-059
    [8]Hu Chenxing, Yang Ce. STUDY ON INSTABILITY OF THE WIDE VANELESS DIFFUSER WITH DIFFERENT TREATMENTS OF VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1775-1784. DOI: 10.6052/0459-1879-19-207
    [9]Huang Yong Li Shenghong Liu Xianbin. On the moment lyapunov exponent of a viscoelastic plate subjected to the excitation of wide band noises[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 551-560. DOI: 10.6052/0459-1879-2011-3-lxxb2009-776
    [10]AN ANALLYSIS OF FLOW IN ATANK WITH COMPLEX GEOMETRY BY NON-ORIHOGONL FINITE VOLUME METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(4): 483-487. DOI: 10.6052/0459-1879-1994-4-1995-571

Catalog

    Article Metrics

    Article views (184) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return