EI、Scopus 收录
中文核心期刊
Wang Deli, Li Chenying, Wu Bingzeng, Jiao Yiyu, Pei Haiqing, Xu Wei. Transition analysis on rhythm modes of Rayleigh oscillators family coupled with memory damping driven by joint noises. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2381-2396. DOI: 10.6052/0459-1879-24-078
Citation: Wang Deli, Li Chenying, Wu Bingzeng, Jiao Yiyu, Pei Haiqing, Xu Wei. Transition analysis on rhythm modes of Rayleigh oscillators family coupled with memory damping driven by joint noises. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2381-2396. DOI: 10.6052/0459-1879-24-078

TRANSITION ANALYSIS ON RHYTHM MODES OF RAYLEIGH OSCILLATORS FAMILY COUPLED WITH MEMORY DAMPING DRIVEN BY JOINT NOISES

  • Received Date: February 17, 2024
  • Accepted Date: April 21, 2024
  • Available Online: April 21, 2024
  • Published Date: April 22, 2024
  • In this work, a design scheme on the parameters inducing transitions of the monorhythmicity, birhythmicity and trirhythmicity mode for Rayleigh oscillators family coupled with memory damping under joint noises is proposed. The stochastic averaging procedure and multi-scale expansion are used to analyze the oscillatory responses on the stochastic Rayleigh oscillators family (8-power, 6-power, and 4-power variants) with memory damping. The transition behavior of oscillators family is qualitatively and quantitatively evaluated from the most probable amplitude and the parameter relation determined by its inverse solution, and multiple probability densities of such as amplitude, joint phase state and its projection and section. The quantitative relationship of transitions on rhythmic modes caused by the coefficients of Rayleigh damping variant and the important parameters of memory damping is preliminarily identified. We notice that the trirhythmicity mode appears in response of 8-power Rayleigh damping oscillator, and a sample scheme for controlling the unstable vibration by combining the generalized elastic modulus and the feedback gains of improved memory damping model, the Rayleigh damping variant coefficients and the random loads parameters is obtained. Numerical techniques of Runge-Kutta are adopted synchronously to demonstrate evolutionary sequences for the phase state of the oscillators family, and intermittent phenomenon is observed, further revealing variation laws of the attractor. The distribution probabilities of vibrational states are simulated to describe reliability of the analytical method, and influence mechanism of joint noise on the oscillator is gained. Shannon entropy integrated based on the response probability, the entropy derivative and the combined indicator on entropy-entropy derivative varying with Rayleigh damping variant coefficients, important parameters of memory damping and random loads parameters are calculated separately. It is found that these indicators (especially the entropy derivative and its related indicator) changing significantly can indicate tipping points on transitions of the oscillators family. Instead of being limited to single-point estimation, these indicators can provide a reference range for the parameter design causing transitions on rhythm modes. The approaches and paths proposed in this paper develop a new improvement idea for the vibration control and the desired vibrational mode in potential engineering applications.
  • [1]
    Tsefack MBS, Tegnitsap JVN, Fotsin HB, et al. Dynamics of high-power coupled nonlinear oscillator arrays for electronic beam steering technique: case of the triode based Van der Pol oscillator. Physica Scripta, 2024, 99(2): 025222 doi: 10.1088/1402-4896/ad195f
    [2]
    Shougat MREU, Perkins E. The Van der Pol physical reservoir computer. Neuromorphic Computing and Engineering, 2023, 3(2): 024004 doi: 10.1088/2634-4386/acd20d
    [3]
    Juárez G, Ramírez-Trocherie MA, Báez Á, et al. Hopf bifurcation for a fractional Van der Pol oscillator and applications to aerodynamics: implications in flutter. Journal of Engineering Mathematics, 2023, 139(1): 1 doi: 10.1007/s10665-023-10258-7
    [4]
    Ecke RE, Shishkina O. Turbulent rotating Rayleigh-Benard convection. Annual Review of Fluid Mechanics, 2023, 55: 603-638 doi: 10.1146/annurev-fluid-120720-020446
    [5]
    Golev A, Arnaudova V, Filial S. Dynamics of a generalized hypothetical Rayleigh-Duffing-like oscillator: Investigations in the light of Melnikov’s approach, simulations (Web-Platform upgrade). International Journal of Differential Equations and Applications, 2023, 22: 123-136
    [6]
    Zhang C, Ma XD, Bi QS. Complex mixed-mode oscillations based on a modified Rayleigh-Duffing oscillator driven by low-frequency excitations. Chaos Solitons & Fractals, 2022, 160: 112184
    [7]
    王浩宇, 吴勇军. 1: 1 内共振对随机振动系统可靠性的影响. 力学学报, 2015, 47(5): 807-813 (Wang Haoyu, Wu Yongjun. Influence of 1: 1 internal resonance on the reliability of random vibration systems. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813 (in Chinese) doi: 10.6052/0459-1879-15-058

    Wang Haoyu, Wu Yongjun. Influence of 1: 1 internal resonance on the reliability of random vibration systems. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 807-813 (in Chinese) doi: 10.6052/0459-1879-15-058
    [8]
    郝颖, 吴志强. 三稳态Van der Pol-Duffng振子的随机P分岔. 力学学报, 2013, 45(2): 257-264 (Hao Ying, Wu Zhiqiang. Stochastic P bifurcation of a tristable Van der Pol-Duffng oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 257-264 (in Chinese)

    Hao Ying, Wu Zhiqiang. Stochastic P bifurcation of a tristable Van der Pol-Duffng oscillator. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 257-264 (in Chinese)
    [9]
    丁虎, 胡超荣, 陈立群等. 轴向变速黏弹性Rayleigh梁非线性参数振动稳态响应. 振动与冲击, 2012, 31(5): 135-138 (Ding Hu, Hu Chaorong, Chen Liqun, et al. Steady state response of nonlinear parametric vibration of axially variable visco-elastic Rayleigh beams. Journal of Vibration and Shock, 2012, 31(5): 135-138 (in Chinese) ) doi: 10.3969/j.issn.1000-3835.2012.05.027

    Ding Hu, Hu Chaorong, Chen Liqun, et al. Steady state response of nonlinear parametric vibration of axially variable visco-elastic Rayleigh beams. Journal of Vibration and Shock, 2012, 31(5): 135-138 (in Chinese) ) doi: 10.3969/j.issn.1000-3835.2012.05.027
    [10]
    陈聚峰, 申永军, 张静等. 时滞反馈下分数阶Rayleigh系统的稳定性分析. 振动与冲击, 2023, 42(2): 1-6 (Chen Jufeng, Shen Yongjun, Zhang Jing, et al. Stability analysis of fractional order Rayleigh systems with time-delay feedback. Journal of Vibration and Shock, 2023, 42(2): 1-6 (in Chinese)

    Chen Jufeng, Shen Yongjun, Zhang Jing, et al. Stability analysis of fractional order Rayleigh systems with time-delay feedback. Journal of Vibration and Shock, 2023, 42(2): 1-6 (in Chinese)
    [11]
    Kundu PK, Chatterjee S. Limit cycle oscillations in a mechanical system under fractional-order lienard type nonlinear feedback. Communications in Nonlinear Science and Numerical Simulation, 2024, 128: 107612 doi: 10.1016/j.cnsns.2023.107612
    [12]
    Wang YL, Li XH, Shen YJ. Study on mechanical vibration control of limit cycle oscillations in the Van der Pol oscillator by means of nonlinear energy sink. Journal of Vibration Engineering & Technologies, 2024, 12: 811-819
    [13]
    Goldbeter A, Yan J. Multi-synchronization and other patterns of multi-rhythmicity in oscillatory biological systems. Interface Focus, 2022, 12(3): 20210089 doi: 10.1098/rsfs.2021.0089
    [14]
    Yan J, Goldbeter A. multi-rhythmicity generated by coupling two cellular rhythms. Journal of the Royal Society Interface, 2019, 16(152): 20180835 doi: 10.1098/rsif.2018.0835
    [15]
    Lucarini V, Pascale S, Boschi R, et al. Global stability properties of the climate: Melancholia states, invariant measures, and phase transitions. Nonlinearity, 2020, 33(9): R59-R92 doi: 10.1088/1361-6544/ab86cc
    [16]
    Barnosky AD, Hadly EA, Bascompte J, et al. Approaching a state shift in earth’s biosphere. Nature, 2012, 486: 52-58 doi: 10.1038/nature11018
    [17]
    马晋忠. 多稳系统中噪声诱导临界过渡的早期预警研究. [博士论文]. 西安: 西北工业大学, 2019 (Ma Jinzhong. Early-warning studies of noise-induced critical transitions in multistable systems. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2019 (in Chinese)

    Ma Jinzhong. Early-warning studies of noise-induced critical transitions in multistable systems. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2019 (in Chinese)
    [18]
    Hua HT, Gu HG. Bifurcations underlying sigh and eupnea rhythmic transition in a pre-Botzinger complex model. European Physical Journal-Special Topics, 2022, 231(22-23): 4109-4116 doi: 10.1140/epjs/s11734-022-00631-5
    [19]
    Goldbeter A. Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2018, 376(2124): 20170376 doi: 10.1098/rsta.2017.0376
    [20]
    Decroly O, Goldbeter A. birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proceedings of the National Academy of Sciences, 1982, 79(22): 6917-6921 doi: 10.1073/pnas.79.22.6917
    [21]
    Kaiser F. Theory of Resonant Effects of RF and MW Energy. Springer US, 1983
    [22]
    Kaiser F, Eichwald C. Bifurcation structure of a driven, multi-limit-cycle Van der Pol oscillator (i): The superharmonic resonance structure. International Journal of Bifurcation and Chaos, 1991, 1(2): 485-491 doi: 10.1142/S0218127491000385
    [23]
    Ghosh P, Sen S, Riaz SS, et al. Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Physical Review E, 2011, 83(3): 036205 doi: 10.1103/PhysRevE.83.036205
    [24]
    Biswas D, Mandal T, Dutta PS, et al. Space-dependent intermittent feedback can control birhythmicity. Chaos, 2023, 33(10): 103136 doi: 10.1063/5.0151697
    [25]
    Biswas D, Banerjee T, Kurths J. Control of birhythmicity through conjugate self-feedback: Theory and experiment. Physical Review E, 2016, 94(4): 042226 doi: 10.1103/PhysRevE.94.042226
    [26]
    Yonkeu RM, Yamapi R, Filatrella G, et, al. Can Levy noise induce coherence and stochastic resonances in a birhythmic Van der Pol system? European Physical Journal B, 2020, 93(8): 144
    [27]
    Decroly O, Goldbeter A. From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. Journal of theoretical biology, 1987, 124(2): 219-250 doi: 10.1016/S0022-5193(87)80264-3
    [28]
    Saha S, Gangopadhyay G, Ray DS. Systematic designing of bi-rhythmic and tri-rhythmic models in families of Van der Pol and Rayleigh oscillators. Communications in Nonlinear Science and Numerical Simulation, 2020, 85: 105234 doi: 10.1016/j.cnsns.2020.105234
    [29]
    Biswas D, Banerjee T, Kurths J. Control of birhythmicity: A self-feedback approach. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(6): 063110 doi: 10.1063/1.4985561
    [30]
    Guo Q, Sun ZK, Xu W. Delay-induced transitions in the birhythmic biological model under joint noise sources. Physica A: Statistical Mechanics and Its Applications, 2019, 525: 337-348 doi: 10.1016/j.physa.2019.03.047
    [31]
    Guo Q, Sun ZK, Xu W. Bifurcations in a fractional birhythmic biological system with time delay. Communications in Nonlinear Science and Numerical Simulation, 2019, 72: 318-328 doi: 10.1016/j.cnsns.2018.12.019
    [32]
    Sun YL, Ning LJ. Bifurcation analysis of a self-sustained birhythmic oscillator under two delays and colored noises. International Journal of Bifurcation and Chaos, 2020, 30(1): 2050013 doi: 10.1142/S0218127420500133
    [33]
    鲁正, 王自欣, 吕西林. 非线性能量阱技术研究综述. 振动与冲击, 2020, 39(4): 1-16, 26 (Lu Zheng, Wang Zixin, Lyu Xilin. Review of studies on nonlinear energy trap techniques. Journal of Vibration and Shock, 2020, 39(4): 1-16, 26 (in Chinese)

    Lu Zheng, Wang Zixin, Lyu Xilin. Review of studies on nonlinear energy trap techniques. Journal of Vibration and Shock, 2020, 39(4): 1-16, 26 (in Chinese)
    [34]
    李猛, 李孙飚, 丁虎. 非线性能量汇胞元减振效率分析. 力学学报, 2023, 55(11): 2614-2623 (Li Meng, Li Sunbiao, Ding Hu. Analysis of the damping efficiency of the nonlinear energy sink cells. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2614-2623 (in Chinese) doi: 10.6052/0459-1879-23-284

    Li Meng, Li Sunbiao, Ding Hu. Analysis of the damping efficiency of the nonlinear energy sink cells. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2614-2623 (in Chinese) doi: 10.6052/0459-1879-23-284
    [35]
    杨涛, 周生喜, 曹庆杰等. 非线性振动能量俘获技术的若干进展. 力学学报, 2021, 53(11): 2894-2909 (Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Several advances in nonlinear vibrational energy trapping techniques. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese) doi: 10.6052/0459-1879-21-474

    Yang Tao, Zhou Shengxi, Cao Qingjie, et al. Several advances in nonlinear vibrational energy trapping techniques. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909 (in Chinese) doi: 10.6052/0459-1879-21-474
    [36]
    张文明, 赵林川, 邹鸿翔. 振动能量采集与振动控制序. 力学学报, 2023, 55(10): 2091-2093 (Zhang Wenming, Zhao Linchuan, Zou Hongxiang. Vibration energy acquisition and vibration control order. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2091-2093 (in Chinese) doi: 10.6052/0459-1879-23-498

    Zhang Wenming, Zhao Linchuan, Zou Hongxiang. Vibration energy acquisition and vibration control order. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2091-2093 (in Chinese) doi: 10.6052/0459-1879-23-498
    [37]
    Sun XT, Wang F, Xu J. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. International Journal of Mechanical Sciences, 2021, 193: 106166 doi: 10.1016/j.ijmecsci.2020.106166
    [38]
    Yan G, Zou HX, Wang S, et al. Bio-inspired vibration isolation: Methodology and design. Applied Mechanics Reviews, 2021, 73(2): 020801 doi: 10.1115/1.4049946
    [39]
    张佳俊, 张舒, 徐鉴. 下肢康复外骨骼人机耦合动力学建模与控制. 动力学与控制学报, 2021, 19(4): 55-63 (Zhang Jiajun, Zhang Shu, Xu Jian. Modeling and control of human-machine coupling dynamics of the lower limb rehabilitation exoskeleton. Journal of Dynamics and Control, 2021, 19(4): 55-63 (in Chinese)

    Zhang Jiajun, Zhang Shu, Xu Jian. Modeling and control of human-machine coupling dynamics of the lower limb rehabilitation exoskeleton. Journal of Dynamics and Control, 2021, 19(4): 55-63 (in Chinese)
    [40]
    邢景点, 李向红, 申永军. 参外联合激励下非线性Zener系统的减振机理研究. 力学学报, 2023, 55(10): 2393-2404 (Xing Jingdian, Li Xianghong, Shen Yongjun. The damping mechanism of nonlinear Zener system under joint excitation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2393-2404 (in Chinese) doi: 10.6052/0459-1879-23-294

    Xing Jingdian, Li Xianghong, Shen Yongjun. The damping mechanism of nonlinear Zener system under joint excitation. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2393-2404 (in Chinese) doi: 10.6052/0459-1879-23-294
    [41]
    王在华, 胡海岩. 含分数阶导数阻尼的线性振动系统的稳定性. 中国科学, 2009, 39(10): 1495-1502 (Wang Zaihua, Hu Haiyan. Stability of a linear vibration system with fractional derivative damping. Science China, 2009, 39(10): 1495-1502 (in Chinese)

    Wang Zaihua, Hu Haiyan. Stability of a linear vibration system with fractional derivative damping. Science China, 2009, 39(10): 1495-1502 (in Chinese)
    [42]
    Wang DL, Pei HQ, Xu W, et al. Transitions in a noisy birhythmic vibro-impact oscillator with improved memory damping regime. Nonlinear Dynamics, 2022, 108(2): 1045-1070 doi: 10.1007/s11071-022-07261-5
    [43]
    Liu ZH, Zhu WQ. Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. Journal of Sound and Vibration, 2007, 299(1-2): 178-195 doi: 10.1016/j.jsv.2006.07.007
    [44]
    Gaudreault M, Drolet F, Viñals J. Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback. Physical Review E, 2010, 82(5): 051124 doi: 10.1103/PhysRevE.82.051124
    [45]
    张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017, 49(3): 565-587 (Zhang Shu, Xu Jian. Progress on the nonlinear dynamics of time-delayed coupled systems. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587 (in Chinese) doi: 10.6052/0459-1879-17-123

    Zhang Shu, Xu Jian. Progress on the nonlinear dynamics of time-delayed coupled systems. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587 (in Chinese) doi: 10.6052/0459-1879-17-123
    [46]
    Wang DL, Pei HQ, Xu W, et al. Resonance characteristics of stochastic dual Duffing oscillators with coupled APHC. Journal of Sound and Vibration, 2021, 498: 115981
    [47]
    Nganso EN, Yonkeu RM, Filatrella G, et al. Multi-rhythmic oscillations and correlated noise effects of a self-sustaining biological system. Nonlinear Dynamics, 2022, 108(4): 4315-4334 doi: 10.1007/s11071-022-07439-x
    [48]
    Arnold L, Jones CKRT, Mischaikow K, et al. Random Dynamical Systems. Springer Berlin Heidelberg, 1995
    [49]
    Ashwin P, Wieczorek S, Vitolo R, et al. Tipping points in open systems bifurcation, noise-induced and rate-dependent examples in the climate system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1962): 1166-1184
    [50]
    Ashwin P, Perryman C, Wieczorek S. Parameter shifts for nonautonomous systems in low dimension: Bifurcation- and rate-induced tipping. Nonlinearity, 2015, 30(6): 544-554
    [51]
    Kumar P, Narayanan S, Gupta S. Investigations on the bifurcation of a noisy Duffing-Van der Pol oscillator. Probabilistic Engineering Mechanics, 2016, 45: 70-86 doi: 10.1016/j.probengmech.2016.03.003
    [52]
    Venkatramani J, Sarkar S, Gupta S. Intermittency in pitch-plunge aeroelastic systems explained through stochastic bifurcations. Nonlinear Dynamics, 2018, 92(3): 1225-1241 doi: 10.1007/s11071-018-4121-5
    [53]
    Gaiko VA. Limit cycles of lienard-type dynamical systems. CUBO A Mathematical Journal, 2008, 10(3): 115-132
    [54]
    朱位秋. 随机振动. 北京: 科学出版社, 1992 (Zhu Weiqiu. Stochastic Vibration. Beijing: Science Press, 1992 (in Chinese)

    Zhu Weiqiu. Stochastic Vibration. Beijing: Science Press, 1992 (in Chinese)
    [55]
    Pobedrya BE. Approximation methods in viscoelasticity theory. Russian Journal of Mathematical Physics, 2007, 14(1): 110-114 doi: 10.1134/S1061920807010074
    [56]
    Joubert A, Allaire G, Amstutz S, et al. Damping optimization of viscoelastic thin structures, application and analysis. Structural and Multidisciplinary Optimization, 2023, 66(7): 149 doi: 10.1007/s00158-023-03602-z
  • Related Articles

    [1]Duan Yajuan, Xu Zongrui, Hao Qi, H. Kato, Qiao Jichao. CREEP MECHANISM OF Pd20Pt20Cu20Ni20P20 HIGH ENTROPY AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2913-2923. DOI: 10.6052/0459-1879-24-092
    [2]Fan Xincheng, Ye Zuyang, Huang Shibing, Cheng Aiping. STUDY ON CONNECTIVITY AND ENTROPY SCALE OF THREE-DIMENSIONAL FRACTURE NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 792-804. DOI: 10.6052/0459-1879-22-579
    [3]Yan A’min, Qiao Yu, Dai Lanhong. FORMATION AND STABILITY OF SHAPED CHARGE LINER JET OF CrMnFeCoNi HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119-2130. DOI: 10.6052/0459-1879-22-274
    [4]Meng Fanzhao, Zhou Ruixu, Li Zhongpeng, Lian Huan. EXPERIMENTAL INVESTIGATION ON THE REGIMES OF HYDROCARBON SUPERSONIC COMBUSTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1533-1547. DOI: 10.6052/0459-1879-21-686
    [5]Hou Xianwei, Xiong Wei, Chen Haihua, Zhang Xianfeng, Wang Haiying, Dai Lanhong. IMPACT ENERGY RELEASE AND DAMAGE CHARACTERISTICS OF TWO HIGH-ENTROPY ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540. DOI: 10.6052/0459-1879-21-327
    [6]Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
    [7]Li Jianguo, Huang Ruirui, Zhang Qian, Li Xiaoyan. MECHNICAL PROPERTIES AND BEHAVIORS OF HIGH ENTROPY ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359. DOI: 10.6052/0459-1879-20-009
    [8]Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282
    [9]Dynamic buckle propagation on Chater's beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 460-467. DOI: 10.6052/0459-1879-1993-4-1995-666
    [10]MOLECULAR DYNAMICS SIMULATION OF ENTROPY AND SURFACE TENSION FOR GRAIN BOUNDARY OF α-Fe[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 443-447. DOI: 10.6052/0459-1879-1991-4-1995-861

Catalog

    Article Metrics

    Article views (208) PDF downloads (57) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return