Citation: | Li Yuanheng, Fan Ruixiang, Yang Fan, Zhang Hongjian, Wu Huiqiang. Modal analysis of multi-satellite stack based on linear equivalent model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2364-2380. DOI: 10.6052/0459-1879-24-007 |
[1] |
何巍, 牟宇, 朱海洋等. 下一代主力运载火箭发展思考. 宇航总体技术, 2023, 7(2): 1-12 (He Wei, Mou Yu, Zhu Haiyang, et al. Reflections on the development of next generation main launch vehicle. Astronautical Systems Engineering Technology, 2023, 7(2): 1-12 (in Chinese)
He Wei, Mou Yu, Zhu Haiyang, et al. Reflections on the development of next generation main launch vehicle. Astronautical Systems Engineering Technology, 2023, 7(2): 1-12 (in Chinese)
|
[2] |
陈振知, 张佰正, 纪彦宇等. 多星批量发射部署技术特点及发展趋势. 上海航天(中英文), 2023, 40(S1): 12-20 (Chen Zhenzhi, Zhang Baizheng, Ji Yanyu, et al. Characteristics and development trends of multi-satellite launch and deployment technology. Aerospace Shanghai (Chinese & English), 2023, 40(S1): 12-20 (in Chinese)
Chen Zhenzhi, Zhang Baizheng, Ji Yanyu, et al. Characteristics and development trends of multi-satellite launch and deployment technology. Aerospace Shanghai (Chinese & English), 2023, 40(S1): 12-20 (in Chinese)
|
[3] |
李元恒, 范瑞祥, 杨帆等. 堆叠式多星组合体结构设计与连接技术发展及展望. 导弹与航天运载技术(中英文), 2024, http://kns.cnki.net/kcms/detail/10.1807.V.20240117.1359.002" target="_blank"> http://kns.cnki.net/kcms/detail/10.1807.V.20240117.1359.002 (Li Yuanheng, Fan Ruixiang, Yang Fan, et al. Development and outlook of structural design and connection technology for multi-satellite stack. Missiles and Space Vehicles (Chinese & English ), 2024, http://kns.cnki.net/kcms/detail/10.1807.V.20240117.1359.002" target="_blank"> http://kns.cnki.net/kcms/detail/10.1807.V.20240117.1359.002 (in Chinese)
Li Yuanheng, Fan Ruixiang, Yang Fan, et al. Development and outlook of structural design and connection technology for multi-satellite stack. Missiles and Space Vehicles (Chinese & English), 2024, http://kns.cnki.net/kcms/detail/10.1807.V.20240117.1359.002 (in Chinese)
|
[4] |
Michel F, Trevisan M, Giordano D, et al. A first look at starlink performance//Proceedings of the 22nd ACM Internet Measurement Conference, 2022: 130-136
|
[5] |
Li B, Liu L, Sang JZ. Tracklet-to-object matching for climbing Starlink satellites through recursive orbit determination and prediction. Research in Astronomy and Astrophysics, 2022, 22(11): 111-123
|
[6] |
Thenozhi S, Yu W. Advances in modeling and vibration control of building structures. Annual Reviews in Control, 2013, 37(2): 346-364 doi: 10.1016/j.arcontrol.2013.09.012
|
[7] |
Ghaedi K, Ibrahim Z, Adeli H, et al. Invited review: Recent developments in vibration control of building and bridge structures. Journal of Vibroengineering, 2017, 19(5): 3564-3580 doi: 10.21595/jve.2017.18900
|
[8] |
Jafari M, Alipour A. Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. Journal of Building Engineering, 2021, 33: 101582 doi: 10.1016/j.jobe.2020.101582
|
[9] |
Ghesmi M, Brindley S. A nonlinear finite element method to assess loads on container stacks. Ocean Engineering, 2021, 235: 109430 doi: 10.1016/j.oceaneng.2021.109430
|
[10] |
Li C, Wang D, Cai Z. Experimental and numerical investigation of lashing bridge and container stack dynamics using a scaled model test. Marine Structures, 2021, 75: 102846 doi: 10.1016/j.marstruc.2020.102846
|
[11] |
Li C, Wang D, Liu J, et al. Experimental and numerical investigation on dynamic response of a four-tier container stack and lashing system subject to rolling and pitching excitation. Applied Ocean Research, 2021, 109: 102553 doi: 10.1016/j.apor.2021.102553
|
[12] |
Li C, Wang D, Liu J. Numerical analysis and experimental study on the scaled model of a container ship lashing bridge. Ocean Engineering, 2020, 201: 107095 doi: 10.1016/j.oceaneng.2020.107095
|
[13] |
Li C, Wang D, Liu J. Numerical simulation of container stacks dynamics under typical motion excitation//International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers, 2019, 58783: V003T02A089
|
[14] |
Kirkayak L, De Souza VA, Suzuki K, et al. On the vibrational characteristics of a two-tier scaled container stack. Journal of Marine Science and Technology, 2011, 16: 354-365 doi: 10.1007/s00773-011-0129-y
|
[15] |
De Souza VA, Kirkayak L, Watanabe I, et al. Experimental and numerical analysis of container multiple stacks dynamics using a scaled model. Ocean Engineering, 2013, 74: 218-232 doi: 10.1016/j.oceaneng.2013.05.013
|
[16] |
De Souza VA, Kirkayak L, Suzuki K, et al. Experimental and numerical analysis of container stack dynamics using a scaled model test. Ocean Engineering, 2012, 39: 24-42 doi: 10.1016/j.oceaneng.2011.10.004
|
[17] |
曹容宁. 地铁车辆段上盖建筑振动的波-谱准解析模型与快速计算方法研究. [博士论文]. 北京: 北京交通大学, 2022 (Cao Rongning. Wave spectral quasi analytical model and rapid calculation of train-induced vibration in over-track buildings of metro depot. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2022 (in Chinese)
Cao Rongning. Wave spectral quasi analytical model and rapid calculation of train-induced vibration in over-track buildings of metro depot. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2022 (in Chinese)
|
[18] |
Sanayei M, Maurya P, Zhao N, et al. Impedance modeling: An efficient modeling method for prediction of building floor vibrations//Structures Congress 2012, 2012: 886-897
|
[19] |
Zhang SY, Jiang JZ, Neild S. Optimal configurations for a linear vibration suppression device in a multi-storey building. Structural Control and Health Monitoring, 2017, 24(3): e1887 doi: 10.1002/stc.1887
|
[20] |
Michel C, Karbassi A, Lestuzzi P. Evaluation of the seismic retrofitting of an unreinforced masonry building using numerical modeling and ambient vibration measurements. Engineering Structures, 2018, 158: 124-135 doi: 10.1016/j.engstruct.2017.12.016
|
[21] |
邱吉宝. 结构动力学及其在航天工程中的应用. 合肥: 中国科学技术大学出版社, 2015 (Qiu Jibao. Structural Dynamics and Its Applications in Aerospace Engineering. Hefei: Press of University of Science and Technology of China, 2015 (in Chinese)
Qiu Jibao. Structural Dynamics and Its Applications in Aerospace Engineering. Hefei: Press of University of Science and Technology of China, 2015 (in Chinese)
|
[22] |
Rui X, Zhang J, Wang X, et al. Multibody system transfer matrix method: the past, the present, and the future. International Journal of Mechanical System Dynamics, 2022, 2(1): 3-26 doi: 10.1002/msd2.12037
|
[23] |
Zheng T, Ji T. Equivalent representations of beams with periodically variable cross-sections. Engineering Structures, 2011, 33(3): 706-719 doi: 10.1016/j.engstruct.2010.11.007
|
[24] |
刘鹏飞, 杨绍普, 刘永强等. 柔性轮对的离散时间传递矩阵法建模及垂向振动. 力学学报, 2022, 54(5): 1375-1386 (Liu Pengfei, Yang Shaopu, Liu Yongqiang, et al. Discrete time transfer matrix modeling of flexible wheelset andvertical vibration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1375-1386 (in Chinese)
Liu Pengfei, Yang Shaopu, Liu Yongqiang, et al. Discrete time transfer matrix modeling of flexible wheelset andvertical vibration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1375-1386 (in Chinese)
|
[25] |
Wang CM, Zhang YY, He XQ. Vibration of nonlocal Timoshenko beams. Nanotechnology, 2007, 18(10): 105401 doi: 10.1088/0957-4484/18/10/105401
|
[26] |
孙琪凯, 张楠, 刘潇. 基于Timoshenko梁理论的钢-混组合梁动力刚度矩阵法. 工程力学, 2022, 39(8): 149-157 (Sun Qikai, Zhang Nan, Liu Xiao. A dynamic stiffness matrix method for steel-concrete composite beams based on the Timoshenko beam theory. Engineering Mechanics, 2022, 39(8): 149-157 (in Chinese)
Sun Qikai, Zhang Nan, Liu Xiao. A dynamic stiffness matrix method for steel-concrete composite beams based on the Timoshenko beam theory. Engineering Mechanics, 2022, 39(8): 149-157 (in Chinese)
|
[27] |
Georgiades F, Warminski J, Cartmell MP. Linear modal analysis of L-shaped beam structures. Mechanical Systems and Signal Processing, 2013, 38(2): 312-332 doi: 10.1016/j.ymssp.2012.12.006
|
[28] |
Cao Y, Cao D, He G, et al. Vibration analysis and distributed piezoelectric energy harvester design for the L-shaped beam. European Journal of Mechanics-A/Solids, 2021, 87: 104214 doi: 10.1016/j.euromechsol.2021.104214
|
[29] |
Hajianmaleki M, Qatu MS. Vibrations of straight and curved composite beams: A review. Composite Structures, 2013, 100: 218-232 doi: 10.1016/j.compstruct.2013.01.001
|
[30] |
牛国华, 王刚锋, 王剑. 组合L型变截面梁的自由振动特性分析. 振动与冲击, 2022, 41(5): 228-234 (Niu Guohua, Wang Gangfeng, Wang Jian. Analysis of free vibration characteristics of composite L-shaped variable cross-section beam. Journal of Vibration and Shock, 2022, 41(5): 228-234 (in Chinese)
Niu Guohua, Wang Gangfeng, Wang Jian. Analysis of free vibration characteristics of composite L-shaped variable cross-section beam. Journal of Vibration and Shock, 2022, 41(5): 228-234 (in Chinese)
|
[31] |
黄可, 张家应, 王青云. 基于非均匀梁模型的二维柔性机翼固有振动分析. 力学学报, 2023, 55(2): 487-496 (Huang Ke, Zhang Jiaying, Wang Qingyun. Natural vibration analysis of two-dimensional flexible wing based on non-uniform beam model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 487-496 (in Chinese)
Huang Ke, Zhang Jiaying, Wang Qingyun. Natural vibration analysis of two-dimensional flexible wing based on non-uniform beam model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 487-496 (in Chinese)
|