Citation: | Bai Xiaowei, Zhao Luyang, Li Liang, Luo Lilong, Yang Jie, Hu Heng. Comparative study on two types of data-driven computational homogenization methods. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1931-1942. DOI: 10.6052/0459-1879-23-641 |
[1] |
彭向峰, 李录贤. 超弹性材料本构关系的最新研究进展. 力学学报, 2020, 52(5): 1221-1232 (Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1232 (in Chinese) doi: 10.6052/0459-1879-20-189
Peng Xiangfeng, Li Luxian. State of the art of constitutive relations of hyperelastic materials. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1232 (in Chinese) doi: 10.6052/0459-1879-20-189
|
[2] |
阳杰, 徐锐, 黄群等. 数据驱动计算力学研究进展. 固体力学学报, 2020, 41(1): 1-14 (Yang Jie, Xu Rui, Huang Qun, et al. Data-driven computational mechanics: A review. Chinese Journal of Solid Mechanics, 2020, 41(1): 1-14 (in Chinese)
Yang Jie, Xu Rui, Huang Qun, et al. Data-driven computational mechanics: A review. Chinese Journal of Solid Mechanics, 2020, 41(1): 1-14 (in Chinese)
|
[3] |
杨强, 孟松鹤, 仲政等. 力学研究中“大数据”的启示、应用与挑战. 力学进展, 2020, 50(1): 202011 (Yang Qiang, Meng Songhe, Zhong Zheng, et al. Big data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 2020, 50(1): 202011 (in Chinese) doi: 10.6052/1000-0992-19-002
Yang Qiang, Meng Songhe, Zhong Zheng, et al. Big data in mechanical research: Potentials, applications and challenges. Advances in Mechanics, 2020, 50(1): 202011 (in Chinese) doi: 10.6052/1000-0992-19-002
|
[4] |
李想, 严子铭, 柳占立. 机器学习与计算力学的结合及应用初探. 科学通报, 2019, 64(7): 635-648 (Li Xiang, Yan Ziming, Liu Zhanli. Combination and application of machine learning and computational mechanics. Chinese Science Bulletin, 2019, 64(7): 635-648 (in Chinese) doi: 10.1360/N972019-00005
Li Xiang, Yan Ziming, Liu Zhanli. Combination and application of machine learning and computational mechanics. Chinese Science Bulletin, 2019, 64(7): 635-648 (in Chinese) doi: 10.1360/N972019-00005
|
[5] |
张峻铭, 杨伟东, 李岩. 人工智能在复合材料研究中的应用. 力学进展, 2021, 51(4): 865-900 (Zhang Junming, Yang Weidong, Li Yan. Application of artificial intelligence in composite materials. Advances in Mechanics, 2021, 51(4): 865-900 (in Chinese) doi: 10.6052/1000-0992-21-019
Zhang Junming, Yang Weidong, Li Yan. Application of artificial intelligence in composite materials. Advances in Mechanics, 2021, 51(4): 865-900 (in Chinese) doi: 10.6052/1000-0992-21-019
|
[6] |
Liu X, Tian S, Tao F, et al. A review of artificial neural networks in the constitutive modeling of composite materials. Composites Part B, 2021, 224: 109152 doi: 10.1016/j.compositesb.2021.109152
|
[7] |
Kirchdoerfer T, Ortiz M. Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 81-101 doi: 10.1016/j.cma.2016.02.001
|
[8] |
Ghaboussi J, Garrett J, Wu X. Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics, 1991, 117: 132-153
|
[9] |
Ghaboussi J, Sidarta DE. New nested adaptive neural networks (NANN) for constitutive modeling. Computers and Geotechnics, 1998, 22: 29-52 doi: 10.1016/S0266-352X(97)00034-7
|
[10] |
Hashash YMA, Jung S, Ghaboussi J. Numerical implementation of a neural network based material model in finite element analysis. International Journal for Numerical Methods in Engineering, 2004, 59: 989-1005 doi: 10.1002/nme.905
|
[11] |
Furukawa T, Yagawa G. Implicit constitutive modelling for viscoplasticity using neural networks. International Journal for Numerical Methods in Engineering, 1998, 43: 195-219 doi: 10.1002/(SICI)1097-0207(19980930)43:2<195::AID-NME418>3.0.CO;2-6
|
[12] |
Al-Haik M, Hussaini M, Garmestani H. Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International Journal of Plasticity, 2006, 22: 1367-1392 doi: 10.1016/j.ijplas.2005.09.002
|
[13] |
Li Q, Cinbiz MN, Zhang Y, et al. Robust deep learning framework for constitutive relations modeling. Acta Materialia, 2023, 254: 118959 doi: 10.1016/j.actamat.2023.118959
|
[14] |
Le BA, Yvonnet J, He QC. Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering, 2015, 104: 1061-1084 doi: 10.1002/nme.4953
|
[15] |
Yang H, Guo X, Tang S, et al. Derivation of heterogeneous material laws via data-driven principal component expansions. Computational Mechanics, 2019, 64: 365-379 doi: 10.1007/s00466-019-01728-w
|
[16] |
Huang DZ, Xu K, Farhat C, et al. Learning constitutive relations from indirect observations using deep neural networks. Journal of Computational Physics, 2020, 416: 109491 doi: 10.1016/j.jcp.2020.109491
|
[17] |
Xu K, Darve E. Physics constrained learning for data-driven inverse modelling from sparse observations. Journal of Computational Physics, 2022, 453: 110938 doi: 10.1016/j.jcp.2021.110938
|
[18] |
Xu K, Tartakovsky AM, Burghardt J, et al. Learning viscoelasticity models from indirect data using deep neural networks. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114124 doi: 10.1016/j.cma.2021.114124
|
[19] |
杨航. 基于力学先验知识的数据驱动弹性和弹塑性本构建模方法研究. [博士论文]. 大连: 大连理工大学, 2022 (Yang Hang. A research on data-driven elastic and elastoplastic constitutive modeling method based on prior knowledge of mechanics. [PhD Thesis]. Dalian: Dalian University of Technology, 2022 (in Chinese)
Yang Hang. A research on data-driven elastic and elastoplastic constitutive modeling method based on prior knowledge of mechanics. [PhD Thesis]. Dalian: Dalian University of Technology, 2022 (in Chinese)
|
[20] |
Linka K, Hillgärtner M, Abdolazizi KP, et al. Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning. Journal of Computational Physics, 2021, 429: 110010 doi: 10.1016/j.jcp.2020.110010
|
[21] |
杨航, 李丽坤, 刘道平等. 数据驱动梯度结构材料弹塑性本构. 固体力学学报, 2021, 42(3): 233-240 (Yang Hang, Li Likun, Liu Daoping, et al. Data-driven elastoplastic constitutive model for gradient structure materials. Chinese Journal of Solid Mechanics, 2021, 42(3): 233-240 (in Chinese)
Yang Hang, Li Likun, Liu Daoping, et al. Data-driven elastoplastic constitutive model for gradient structure materials. Chinese Journal of Solid Mechanics, 2021, 42(3): 233-240 (in Chinese)
|
[22] |
Nguyen LTK, Keip MA. A data-driven approach to nonlinear elasticity. Computers and Structures, 2018, 194: 97-115 doi: 10.1016/j.compstruc.2017.07.031
|
[23] |
Platzer A, Leygue A, Stainier L, et al. Finite element solver for data-driven finite strain elasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113756 doi: 10.1016/j.cma.2021.113756
|
[24] |
Zheng Z, Zhang Z, Ye H, et al. Distance minimizing based data-driven computational method for the finite deformation of hyperelastic materials. International Journal for Numerical Methods in Engineering, 2023, 124: 2315-2340 doi: 10.1002/nme.7212
|
[25] |
Eggersmann R, Kirchdoerfer T, Reese S, et al. Model-free data-driven inelasticity. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 81-99 doi: 10.1016/j.cma.2019.02.016
|
[26] |
Zhou Y, Zhan H, Zhang W, et al. A new data-driven topology optimization framework for structural optimization. Computers and Structures, 2020, 239: 106310 doi: 10.1016/j.compstruc.2020.106310
|
[27] |
Xu R, Yang J, Yan W, et al. Data-driven multiscale finite element method: From concurrence to separation. Computer Methods in Applied Mechanics and Engineering, 2020, 363: 112893 doi: 10.1016/j.cma.2020.112893
|
[28] |
Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 3233-3244 doi: 10.1016/S0045-7825(03)00348-7
|
[29] |
Huang W, Xu R, Yang J, et al. Data-driven multiscale simulation of FRP based on material twins. Composite Structures, 2021, 256: 113013 doi: 10.1016/j.compstruct.2020.113013
|
[30] |
Tang S, Zhang G, Yang H, et al. MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112587 doi: 10.1016/j.cma.2019.112587
|
[31] |
Tang S, Li Y, Qiu H, et al. MAP123-EP: A mechanistic-based data-driven approach for numerical elastoplastic analysis. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112955 doi: 10.1016/j.cma.2020.112955
|
[32] |
Xu Y, Yang J, Bai X, et al. Material database construction for data-driven computing via a continuous path-following method. Composite Structures, 2023, 319: 117187 doi: 10.1016/j.compstruct.2023.117187
|
[33] |
Damil N, Potier-Ferry M. A new method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures. International Journal of Engineering Science, 1990, 28: 943-957 doi: 10.1016/0020-7225(90)90043-I
|
[34] |
Li L, Shao Q, Yang Y, et al. A database construction method for data-driven computational mechanics of composites. International Journal of Mechanical Sciences, 2023, 249: 108232 doi: 10.1016/j.ijmecsci.2023.108232
|
[35] |
Kim S, Shin H. Data-driven multiscale finite-element method using deep neural network combined with proper orthogonal decomposition. Engineering with Computers, 2024, 40: 661-675 doi: 10.1007/s00366-023-01813-y
|
[36] |
张玉辉, 姜清辉. 距离最小化数据驱动计算方法中平衡因子取值影响研究. 工程力学, 2022, 39(6): 11-20 (Zhang Yuhui, Jiang Qinghui. The influence of the balance factor in the distance-minimizing data-driven computational method. Engineering Mechanics, 2022, 39(6): 11-20 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0199
Zhang Yuhui, Jiang Qinghui. The influence of the balance factor in the distance-minimizing data-driven computational method. Engineering Mechanics, 2022, 39(6): 11-20 (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0199
|
[37] |
Nguyen LTK, Aydin RC, Cyron CJ. Accelerating the distance-minimizing method for data-driven elasticity with adaptive hyperparameters. Computational Mechanics, 2022, 70: 621-638 doi: 10.1007/s00466-022-02183-w
|
[38] |
Bai X, Yang J, Yan W, et al. A data-driven approach for instability analysis of thin composite structures. Computers and Structures, 2022, 273: 106898 doi: 10.1016/j.compstruc.2022.106898
|
[39] |
Eggersmann R, Stainier L, Ortiz M, et al. Efficient data structures for model-free data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 2021, 382: 113855 doi: 10.1016/j.cma.2021.113855
|
[40] |
Kuang Z, Yan W, Yu K, et al. Data-driven computing for nonlinear problems of composite structures based on sub-domain search technique. Computers and Structures, 2023, 279: 106982 doi: 10.1016/j.compstruc.2023.106982
|
[41] |
Yang J, Xu R, Hu H, et al. Structural-Genome-Driven computing for composite structures. Composite Structures, 2019, 215: 446-453 doi: 10.1016/j.compstruct.2019.02.064
|
[42] |
Yan W, Huang W, Huang Q, et al. Data-driven multiscale method for composite plates. Computational Mechanics, 2022, 70: 1025-1040 doi: 10.1007/s00466-022-02195-6
|
[43] |
Hui Y, Bai X, Yang Y, et al. A data-driven CUF-based beam model based on the tree-search algorithm. Composite Structures, 2022, 300: 116123 doi: 10.1016/j.compstruct.2022.116123
|
[44] |
Yang J, Huang W, Huang Q, et al. An investigation on the coupling of data-driven computing and model-driven computing. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114798 doi: 10.1016/j.cma.2022.114798
|
[45] |
Yang J, Li P, Zhang Y, et al. Unified functional based data-model-coupling computing for composite materials and structures. Composite Structures, 2023, 312: 116840 doi: 10.1016/j.compstruct.2023.116840
|
[46] |
徐锐. 面向复合材料结构的计算均匀化方法研究. [博士论文]. 武汉: 武汉大学. 2020 (Xu Rui. A research on computational homogenization for composite structures. [PhD Thesis]. Wuhan: Wuhan University, 2020 (in Chinese)
Xu Rui. A research on computational homogenization for composite structures. [PhD Thesis]. Wuhan: Wuhan University, 2020 (in Chinese)
|
[47] |
Friedman JH, Bentley JL, Finkel RA. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 1977, 3: 209-226 doi: 10.1145/355744.355745
|
[48] |
Karniadakis GE, Kevrekidis IG, Lu L, et al. Physics-informed machine learning. Nature Reviews Physics, 2021, 3: 422-440 doi: 10.1038/s42254-021-00314-5
|
[1] | Gong Jingfeng, Chen Sicheng, Xuan Lingkuan, Li Chenqi, Zhang Yue. FUNCTIONALLY GRADED MATERIAL DATA DRIVEN CELL-VERTEX FINITE VOLUME METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 136-147. DOI: 10.6052/0459-1879-24-303 |
[2] | Feng Yixin, Peng Hui, Luo Wei. RESEARCH ON PARAMETER IDENTIFICATION OF COMPOSITE MATERIALS BY COMBINATION OF SELF-CONSISTENT CLUSTER ANALYSIS, NEURAL NETWORK AND BAYESIAN OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3333-3350. DOI: 10.6052/0459-1879-24-246 |
[3] | Ji Shunying. Preface of Theme Articles on Computation Mechanics of Granular Materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2355-2356. DOI: 10.6052/0459-1879-21-428 |
[4] | Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211 |
[5] | Shengwang Hao, Ju Sun. A sensitive precursor to catastrophic failure in heterogeneous brittle materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 339-344. DOI: 10.6052/0459-1879-2008-3-2007-552 |
[6] | Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167 |
[7] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[8] | Microscopic heterogeneity and macroscopic mechanical behavior of a polycrystalline material[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 714-723. DOI: 10.6052/0459-1879-2004-6-2003-444 |
[9] | HOMOGENIZATION METHOD OF STRESS ANALYSIS OF COMPOSITE STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 306-313. DOI: 10.6052/0459-1879-1997-3-1995-230 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
1. |
龚京风,陈思成,宣领宽,李晨琦,张跃. 功能梯度材料数据驱动格点型有限体积法. 力学学报. 2025(01): 136-147 .
![]() | |
2. |
冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 .
![]() |