Citation: | Li Yuyang, Ning Hongyang, Wang Ziyang, Zhang Fujian, Zhang Zhongqiang. Experimental study on the efficiency of microparticles patterning manipulated by acoustic field. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1233-1240. DOI: 10.6052/0459-1879-23-634 |
[1] |
Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature, 2003, 423(6936): 153-156 doi: 10.1038/nature01613
|
[2] |
钱盛友, 王鸿樟, 孙福成. 声流现象的研究及其应用. 应用声学, 1997, 16(6): 38-42 (Qian Shengyou, Wang Hongzhang, Sun Fucheng. Study of acoustic flow phenomena and their applications. Applied Acoustics, 1997, 16(6): 38-42 (in Chinese)
Qian Shengyou, Wang Hongzhang, Sun Fucheng. Study of acoustic flow phenomena and their applications. Applied Acoustics, 1997, 16(6): 38-42 (in Chinese)
|
[3] |
王成会, 林书玉. 超声波作用下气泡的非线性振动. 力学学报, 2010, 42(6): 1050-1059 (Wang Chenhui, Lin Shuyu. Nonlinear vibration of bubbles under ultrasonic action. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1050-1059 (in Chinese)
Wang Chenhui, Lin Shuyu. Nonlinear vibration of bubbles under ultrasonic action. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1050-1059 (in Chinese)
|
[4] |
邱纪成, 王晓明, 梅玉林. 有限周期微穿孔波纹板吸声体吸声性能研究. 力学学报, 2023, 55(4): 939-953 (Qiu Jicheng, Wang Xiaoming, Mei Yulin. Acoustic performance of finite-period microperforated corrugated sheet absorbers. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 939-953 (in Chinese)
Qiu Jicheng, Wang Xiaoming, Mei Yulin. Acoustic performance of finite-period microperforated corrugated sheet absorbers. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 939-953 (in Chinese)
|
[5] |
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics–changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab on a Chip, 2023, 23(5): 1300-1338 doi: 10.1039/D2LC00439A
|
[6] |
Li YY, Liu XM, Huang Q, et al. Bubbles in microfluidics: An all-purpose tool for micromanipulation. Lab on a Chip, 2021, 21(6): 1016-1035 doi: 10.1039/D0LC01173H
|
[7] |
Shi J, Ahmed D, Mao X, et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on a Chip, 2009, 9(20): 2890-2895 doi: 10.1039/b910595f
|
[8] |
Janiak J, Li YY, Ferry Y, et al. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nature Communications, 2023, 14: 4705 doi: 10.1038/s41467-023-40387-7
|
[9] |
Rezk AR, Ahmed H, Ramesan S, et al. High frequency sonoprocessing: A new field of cavitation-free acoustic materials synthesis, processing, and manipulation. Advanced Science, 2021, 8(1): 2001983 doi: 10.1002/advs.202001983
|
[10] |
Kolesnik K, Xu M, Lee PVS, et al. Unconventional acoustic approaches for localized and designed micromanipulation. Lab on a Chip, 2021, 21(15): 2837-2856 doi: 10.1039/D1LC00378J
|
[11] |
Whymark RR. Acoustic field positioning for containerless processing. Ultrasonics, 1975, 13(6): 251-261 doi: 10.1016/0041-624X(75)90072-4
|
[12] |
Vuille-dit-Bille E, Deshmukh DV, Connolly S, et al. Tools for manipulation and positioning of microtissues. Lab on a Chip, 2022, 22: 4043-4066
|
[13] |
Jooss VM, Bolten JS, Huwyler J, et al. In vivo acoustic manipulation of microparticles in zebrafish embryos. Science Advances, 2022, 22: eabm2785 doi: 10.1126/sciadv.abm2785
|
[14] |
Deshmukh DV, Reichert P, Zvick J, et al. Continuous production of acoustically patterned cells within hydrogel fibers for musculoskeletal tissue engineering. Advanced Functional Materials, 2022, 32(30): 2113038
|
[15] |
Armstrong PK, Puetzer JL, Serio A, et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Advanced Materials, 2018, 30(43): 1802649 doi: 10.1002/adma.201802649
|
[16] |
Zhang SP, Lata J, Chen C, et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nature Communications, 2018, 9(1): 2928 doi: 10.1038/s41467-018-05297-z
|
[17] |
Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proceedings of the National Academy of Sciences, 2016, 113(6): 1522-1527 doi: 10.1073/pnas.1524813113
|
[18] |
Guex AG, Marzio DN, Eglin D, et al. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Materials Today Bio, 2021, 10: 100110 doi: 10.1016/j.mtbio.2021.100110
|
[19] |
Gu Y, Chen C, Rufo J, et al. Acoustofluidic holography for micro- to nanoscale particle manipulation. ACS Applied Nano Materials, 2020, 14(11): 14635-14645
|
[20] |
汲婧, 刘子源, 张晶等. 脱细胞真皮基质在角膜中植入性的生物力学研究. 力学学报, 2014, 46(1): 145-154 (Ji Jing, Liu Ziyuan, Zhang Jing, et al. Biomechanical study of implantability of decellularized dermal stroma in the cornea. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 145-154 (in Chinese) doi: 10.6052/0459-1879-13-439
Ji Jing, Liu Ziyuan, Zhang Jing, et al. Biomechanical study of implantability of decellularized dermal stroma in the cornea. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 145-154 (in Chinese) doi: 10.6052/0459-1879-13-439
|
[21] |
刘文星. 基于BAW型驻波声镊微纳粒子图案化操控及封装. [硕士论文]. 杭州: 杭州电子科技大学, 2023 (Liu Wenxing. BAW-based acoustic tweezers for patterning and encapsulation of micro-nano particles. [Master Thesis]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2023 (in Chinese)
Liu Wenxing. BAW-based acoustic tweezers for patterning and encapsulation of micro-nano particles. [Master Thesis]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2023 (in Chinese)
|
[22] |
Gor'kov LP. Forces acting on a small particle in an acoustic field within an ideal fluid. Institute for Physical Problems of the USSR Academy of Sciences, 1961, 140: 88-91
|
[23] |
Nyborg WL. Acoustic streaming due to attenuated plane waves. The Journal of the Acoustical Society of America, 1953, 25(1): 68-75 doi: 10.1121/1.1907010
|
[24] |
Bruus H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a Chip, 2012, 12: 1014-1021 doi: 10.1039/c2lc21068a
|
[25] |
Marmottant P, Versluis M, Jong ND, et al. High-speed imaging of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved acoustic streaming. Experiments in Fluids, 2006, 41: 147-153 doi: 10.1007/s00348-005-0080-y
|
[26] |
Doinikov AA. Acoustic radiation pressure on a compressible sphere in a viscous fluid. Journal of Fluid Mechanics, 1994, 267: 1-22 doi: 10.1017/S0022112094001096
|
[27] |
Courtney CRP, Ong CK, Drinkwater BW, et al. Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves. Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, 2012, 468(2138): 337-360
|
[28] |
Bernassau A, Courtney C, BeelEY J, et al. Interactive manipulation of microparticles in an octagonal sonotweezer. Applied Physics Letters, 2013, 102(16): 164101 doi: 10.1063/1.4802754
|
[29] |
Zhang J, Meng L, Cai F, et al. Multi-scale patterning of microparticles using a combination of surface acoustic waves and ultrasonic bulk waves. Applied Physics Letters, 2014, 104(22): 224103 doi: 10.1063/1.4881261
|
[30] |
Xia Y, Nguyen TD, Yang M, et al. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nature Nanotechnology, 2011, 6(9): 580-587 doi: 10.1038/nnano.2011.121
|
[31] |
Yang L, Yu J, Yang S, et al. A Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 2022, 38(3): 1531-1551 doi: 10.1109/TRO.2021.3111788
|
[32] |
Rufo J, Cai F, Friend J, et al. Acoustofluidics for biomedical applications. Nature Reviews Methods Primers, 2022, 2: 30 doi: 10.1038/s43586-022-00109-7
|
[33] |
刘石磊. 声学微流控器件中的物理场及表征方法的研究. [博士论文]. 南京: 南京大学, 2019 (Liu Shilei. Research on physical fields and characterization methods in acoustic microfluidic devices. [PhD Thesis]. Nanjing: Nanjing University, 2019 (in Chinese)
Liu Shilei. Research on physical fields and characterization methods in acoustic microfluidic devices. [PhD Thesis]. Nanjing: Nanjing University, 2019 (in Chinese)
|
[34] |
Weiser MAH, Apfel RE, Neppiras EA. Interparticle forces on red cells in a standing wave field. Acta Acustica United with Acustica, 1984, 56(2): 114-119
|
[35] |
朱庆麟. 基于超声操控的微纳米颗粒阵列及其在生物传感中的应用. [博士论文]. 北京: 北京科技大学, 2023 (Zhu Qinglin. Ultrasound induced micro/nano particle array towards biosensing. [PhD Thesis]. Beijing: University of Science and Technology Beijing, 2023 (in Chinese)
Zhu Qinglin. Ultrasound induced micro/nano particle array towards biosensing. [PhD Thesis]. Beijing: University of Science and Technology Beijing, 2023 (in Chinese)
|
[1] | Yue Liangbo, Wang Bing, Gu Bin. INVERSION OF LAYERED BIOLOGICAL SOFT TISSUE PROPERTIES BASED ON METHOD OF DISPERSION CURVES AND MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2752-2761. DOI: 10.6052/0459-1879-24-173 |
[2] | Qin Yuan, Chen Xi, Wei Dong, Ren Xiaoyong, Xu Guangkui. FLUID–SOLID COUPLING STUDY OF AIRWAY TISSUE DEFORMATIONS UNDER AIRFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 472-481. DOI: 10.6052/0459-1879-23-278 |
[3] | Li Shihai, Zhang Li. THE EXPERIENCE OF PRACTICING THE THOUGHT OF ENGINEERING SCIENCE-ENGINEERING SCIENCE IS THE SOURCE OF TECHNOLOGICAL INNOVATION AND HUMAN UNDERSTANDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2332-2342. DOI: 10.6052/0459-1879-22-326 |
[4] | Shaolin Chen, Xiaofei Ke, Hongxiang Zhang. A UNIFIED COMPUTATIONAL FRAMEWORK FOR FLUID-SOLID COUPLING IN MARINE EARTHQUAKE ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606. DOI: 10.6052/0459-1879-18-333 |
[5] | Li Ailun, Fu Zhuojia, Li Powei, Chen Wen. GENERALIZED FINITE DIFFERENCE METHOD FOR BIOHEAT TRANSFER ANALYSIS ON SKIN TISSUE WITH TUMORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1198-1205. DOI: 10.6052/0459-1879-18-155 |
[6] | Zhang Dingli. ESSENTIAL ISSUES AND THEIR RESEARCH PROGRESS IN TUNNEL AND UNDERGROUND ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21. DOI: 10.6052/0459-1879-16-348 |
[7] | The biothermomechanical behaviour of skin tissue under electromagnetic heating[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 719-732. DOI: 10.6052/0459-1879-2010-4-lxxb2008-623 |
[8] | Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167 |
[9] | Yasser Aboelkassem, Georgios H. Vatistas. On the refracted patterns produced by liquid vortices[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 11-15. DOI: 10.6052/0459-1879-2007-1-2006-122 |
[10] | ELEMENT FREE METHOD AND ITS APPLICATION IN ENGINEERING 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 193-202. DOI: 10.6052/0459-1879-1998-2-1995-116 |