Citation: | Zheng Yisheng, Chen Yihan, Qu Yegao, Meng Guang. Supratransmission hysteresis and nonreciprocal codes in a piezoelectric metastructure with bistable-circuit shunts. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2103-2113. DOI: 10.6052/0459-1879-23-612 |
[1] |
Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917-924 doi: 10.1038/nmat3431
|
[2] |
尹剑飞, 蔡力, 方鑫等. 力学超材料研究进展与减振降噪应用. 力学进展, 2022, 52(3): 508-586 (Yin Jianfei, Cai Li, Fang Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 2022, 52(3): 508-586 (in Chinese) doi: 10.6052/1000-0992-22-005
Yin Jianfei, Cai Li, Fang Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 2022, 52(3): 508-586 (in Chinese) doi: 10.6052/1000-0992-22-005
|
[3] |
杨世礼, 钟雨豪, 颜士玲等. 弹性板波超材料研究进展. 科学通报, 2022, 67: 1232-1248 (Yang Shili, Zhong Yuhao, Yan Shiling, et al. A review of elastic plate wave metamaterials. Chinese Science Bulletin, 2022, 67: 1232-1248 (in Chinese)
Yang Shili, Zhong Yuhao, Yan Shiling, et al. A review of elastic plate wave metamaterials. Chinese Science Bulletin, 2022, 67: 1232-1248 (in Chinese)
|
[4] |
Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science, 2000, 289(5485): 1734-1736 doi: 10.1126/science.289.5485.1734
|
[5] |
Yang Z, Huang X. An acoustic cloaking design based on topology optimization. The Journal of the Acoustical Society of America, 2022, 152(6): 3510-3521 doi: 10.1121/10.0016493
|
[6] |
Duan G, Zheng S, Lin ZK, et al. Numerical and experimental investigation of second-order mechanical topological insulators. Journal of the Mechanics and Physics of Solids, 2023, 174: 105251 doi: 10.1016/j.jmps.2023.105251
|
[7] |
Liang B, Yuan B, Cheng JC. Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Physical Review Letters, 2009, 103(10): 104301 doi: 10.1103/PhysRevLett.103.104301
|
[8] |
Xie Y, Konneker A, Popa BI, et al. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Applied Physics Letters, 2013, 103(20): 201906 doi: 10.1063/1.4831770
|
[9] |
Ma G, Fan X, Sheng P, et al. Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6638-6643
|
[10] |
Bae MH, Oh JH. Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 139: 103930 doi: 10.1016/j.jmps.2020.103930
|
[11] |
Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: Principle, progress, and perspectives. Journal of Sound and Vibration, 2022, 528: 116886 doi: 10.1016/j.jsv.2022.116886
|
[12] |
Yan B, Yu N, Wu C. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Applied Mathematics and Mechanics, 2022, 43(7): 1045-1062 doi: 10.1007/s10483-022-2868-5
|
[13] |
方虹斌, 吴海平, 刘作林等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese) doi: 10.6052/0459-1879-21-478
Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese) doi: 10.6052/0459-1879-21-478
|
[14] |
Patil GU, Matlack KH. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 2022, 233: 1-46 doi: 10.1007/s00707-021-03089-z
|
[15] |
王凯, 周加喜, 蔡昌琦等. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694 (Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694 (in Chinese) doi: 10.6052/0459-1879-22-108
Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694 (in Chinese) doi: 10.6052/0459-1879-22-108
|
[16] |
Xia Y, Ruzzene M, Erturk A. Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Applied Physics Letters, 2019, 114: 093501 doi: 10.1063/1.5066329
|
[17] |
Zhang X, Yu H, He Z, et al. A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 2021, 159: 107826 doi: 10.1016/j.ymssp.2021.107826
|
[18] |
Fang X, Wen J, Bonello B, et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 2017, 8(1): 1288 doi: 10.1038/s41467-017-00671-9
|
[19] |
Raney JR, Nadkarni N, Daraio C, et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences, 2016, 113(35): 9722-9727 doi: 10.1073/pnas.1604838113
|
[20] |
Deng B, Wang P, He Q, et al. Metamaterials with amplitude gaps for elastic solitons. Nature Communications, 2018, 9(1): 3410 doi: 10.1038/s41467-018-05908-9
|
[21] |
Wu Z, Wang KW. On the wave propagation analysis and supratransmission prediction of a metastable modular metastructure for non-reciprocal energy transmission. Journal of Sound and Vibration, 2019, 458: 389-406 doi: 10.1016/j.jsv.2019.06.032
|
[22] |
Geniet F, Leon J. Energy transmission in the forbidden band gap of a nonlinear chain. Physical Review Letters, 2002, 89(13): 134102 doi: 10.1103/PhysRevLett.89.134102
|
[23] |
Casimir HBG. On Onsager’s principle of microscopic reversibility. Reviews of Modern Physics, 1945, 17(2-3): 343 doi: 10.1103/RevModPhys.17.343
|
[24] |
Fleury R, Sounas DL, Haberman MR, et al. Nonreciprocal acoustics. Acoustics Today, 2015, 11(3): 14-21
|
[25] |
Nassar H, Yousefzadeh B, Fleury R, et al. Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials, 2020, 5(9): 667-685 doi: 10.1038/s41578-020-0206-0
|
[26] |
Liang B, Guo XS, Tu J, et al. An acoustic rectifier. Nature Materials, 2010, 9(12): 989-992 doi: 10.1038/nmat2881
|
[27] |
Liu C, Du Z, Sun Z, et al. Frequency-preserved acoustic diode model with high forward-power-transmission rate. Physical Review Applied, 2015, 3(6): 064014 doi: 10.1103/PhysRevApplied.3.064014
|
[28] |
Wu Z, Zheng Y, Wang KW. Metastable modular metastructures for on-demand reconfiguration of band structures and non-reciprocal wave propagation. Physical Review E, 2018, 97(2): 022209 doi: 10.1103/PhysRevE.97.022209
|
[29] |
Li ZN, Wang YZ, Wang YS. Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials. The Journal of the Acoustical Society of America, 2021, 150(2): 891-905 doi: 10.1121/10.0005817
|
[30] |
Zheng Y, Tian W, Lee NKX, et al. A programmable macro-fiber-composite meta-ring with digital shunting circuits. Journal of Sound and Vibration, 2022, 533: 117017 doi: 10.1016/j.jsv.2022.117017
|
[31] |
Dai S, Zheng Y, Mao J, et al. Vibro-acoustic control of a programmable meta-shell with digital piezoelectric shunting. International Journal of Mechanical Sciences, 2023, 255(800): 108475
|
[32] |
Zheng Y, Chen B, Dai S, et al. Emergence of negative-dispersion passbands below the ring frequency of a piezoelectric meta-shell. Journal of Sound and Vibration, 2023, 545: 117447 doi: 10.1016/j.jsv.2022.117447
|
[33] |
Marconi J, Riva E, Di Ronco M, et al. Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array. Physical Review Applied, 2020, 13(3): 031001 doi: 10.1103/PhysRevApplied.13.031001
|
[34] |
易凯军, 陈洋洋, 朱睿等. 力电耦合主动超材料及其弹性波调控. 科学通报, 2022, 67(12): 1290-1304 (Yi Kaijun, Chen Yangyang, Zhu Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 2021, 67(12): 1290-1304 (in Chinese)
Yi Kaijun, Chen Yangyang, Zhu Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 2021, 67(12): 1290-1304 (in Chinese)
|
[35] |
袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 2021, 53(8): 2101-2116 (Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 (in Chinese) doi: 10.6052/0459-1879-21-198
Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 (in Chinese) doi: 10.6052/0459-1879-21-198
|
[36] |
李政阳, 王彦正, 马天雪等. 智能压电声子晶体与超材料研究现状与展望. 科学通报, 2022, 67: 1305-1325 (Li Zhengyang, Wang Yanzheng, Ma Tianxue, et al. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 2022, 67: 1305-1325 (in Chinese) doi: 10.1360/TB-2021-1265
Li Zhengyang, Wang Yanzheng, Ma Tianxue, et al. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 2022, 67: 1305-1325 (in Chinese) doi: 10.1360/TB-2021-1265
|
[37] |
Zheng Y, Wu Z, Zhang X, et al. A piezo-metastructure with bistable circuit shunts for adaptive nonreciprocal wave transmission. Smart Materials and Structures, 2019, 28(4): 045005 doi: 10.1088/1361-665X/ab083c
|
[38] |
Sugino C, Leadenham S, Ruzzene M, et al. An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 2017, 26(5): 055029 doi: 10.1088/1361-665X/aa6671
|
[39] |
Zheng Y, Zhang J, Qu Y, et al. Investigations of a piezoelectric metastructure using negative-resistance circuits to enhance the bandgap performance. Journal of Vibration and Control, 2022, 28(17-18): 2346-2356 doi: 10.1177/10775463211010540
|
[1] | NONLINEAR VIBRATION CONTROL OF DISCRETE DYNAMICS SYSTEMS BASED ON NON-HERMITIAN SKIN EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics. |
[2] | Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. EFFECT OF MICROSTRUCTURE ON FLOW BEHAVIOR DURING PENETRATION OF W25Fe25Ni25Mo25 HIGH-ENTROPY ALLOY PROJECTILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140-2151. DOI: 10.6052/0459-1879-22-128 |
[3] | Liu Jun, Gao Fuping. HYSTERESIS IN VORTEX-INDUCED VIBRATIONS OF A NEAR-WALL CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1630-1640. DOI: 10.6052/0459-1879-19-293 |
[4] | Xiaoming Wang, Rongxing Wu, Heng Xiao. EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493. DOI: 10.6052/0459-1879-18-334 |
[5] | Zhang Yi, Han Xiujing, Bi Qinsheng. SERIES-MODE PITCHFORK-HYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 228-236. DOI: 10.6052/0459-1879-18-223 |
[6] | Guo Hongbao, Jia Purong, Wang Bo, Jiao Guiqiong, Zeng Zeng. STUDY ON CONSTITUENT PROPERTIES OF A 2D-SiC/SiC COMPOSITE BY HYSTERESIS MEASURMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 260-269. DOI: 10.6052/0459-1879-14-247 |
[7] | Li Longbiao. INVESTIGATION ON FATIGUE HYSTERESIS LOOPS MODELS OF FIBRE-REINFORCED CERAMIC-MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 710-729. DOI: 10.6052/0459-1879-13-332 |
[8] | Peng Bai Qian Chen Liu Xinyu Feng Li. Unsteady dynamic aerodynamic hysteresis effects and linear modeling about the slide-skin swept-angle morphing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1020-1029. DOI: 10.6052/0459-1879-2011-6-lxxb2011-125 |
[9] | On hysteresis and retardation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746. DOI: 10.6052/0459-1879-2010-4-lxxb2009-414 |
[10] | Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086 |