EI、Scopus 收录
中文核心期刊
Zheng Yisheng, Chen Yihan, Qu Yegao, Meng Guang. Supratransmission hysteresis and nonreciprocal codes in a piezoelectric metastructure with bistable-circuit shunts. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2103-2113. DOI: 10.6052/0459-1879-23-612
Citation: Zheng Yisheng, Chen Yihan, Qu Yegao, Meng Guang. Supratransmission hysteresis and nonreciprocal codes in a piezoelectric metastructure with bistable-circuit shunts. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 2103-2113. DOI: 10.6052/0459-1879-23-612

SUPRATRANSMISSION HYSTERESIS AND NONRECIPROCAL CODES IN A PIEZOELECTRIC METASTRUCTURE WITH BISTABLE-CIRCUIT SHUNTS

  • Received Date: December 18, 2023
  • Accepted Date: February 05, 2024
  • Available Online: February 05, 2024
  • Published Date: February 06, 2024
  • It is able to achieve novel properties of vibration transmission by utilizing the nonlinear effects of metastructures. Bistable metastructures are known to possess the nonlinear supratransmission behavior, which states that in the linearized bandgap of metastructures, the transmitted vibration energy increases sharply when the excitation amplitude reaches a certain threshold. In this paper, the electrical-mechanical coupling numerical model is established for a piezoelectric metastructure with bistable-circuit shunts, the model order of which is further reduced by using the Galerkin method for improving the computation efficiency. With the achieved dynamic model, we investigate the nonlinear properties of vibration transmission through the bistable piezoelectric metastructure. It is found that, in the local-resonance bandgap of the linearized metastructure around stable equilibria, the supratransmission thresholds exhibit distinctions when the excitation amplitude sweeps up versus down, indicating the emergence of a hysteresis effect in supratransmission. The supratransmission hysteresis range can be effectively shifted through adjusting the distance between the two stable equilibria or altering the resonance intensity of circuits around them. Furthermore, it is observed that by configurating linear resonant circuits on one side of the metastructure to introduce a system asymmetry, the supratransmission hysteresis ranges of the forward and backward directions deviate away from each other. This nonreciprocal hysteresis effect enables appearance of different patterns of nonreciprocal codes in the metastructure, which can be tuned by altering the excitation amplitude. The deviation of the forward and backward supratransmission hysteresis ranges can be improved if a larger system asymmetry is used, making this sort of nonreciprocal codes adaptive. Overall, this research extends the nonreciprocity patterns of conventional metamaterials, which is not limited to the settled “transmission” or “non-transmission” states of elastic wave in the two opposite directions. The deliberately designed elastic binary codes can be seen as a sort of elastic information. Therefore, this research also opens up possibilities for achieving unidirectional transmission of elastic information.
  • [1]
    Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917-924 doi: 10.1038/nmat3431
    [2]
    尹剑飞, 蔡力, 方鑫等. 力学超材料研究进展与减振降噪应用. 力学进展, 2022, 52(3): 508-586 (Yin Jianfei, Cai Li, Fang Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 2022, 52(3): 508-586 (in Chinese) doi: 10.6052/1000-0992-22-005

    Yin Jianfei, Cai Li, Fang Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 2022, 52(3): 508-586 (in Chinese) doi: 10.6052/1000-0992-22-005
    [3]
    杨世礼, 钟雨豪, 颜士玲等. 弹性板波超材料研究进展. 科学通报, 2022, 67: 1232-1248 (Yang Shili, Zhong Yuhao, Yan Shiling, et al. A review of elastic plate wave metamaterials. Chinese Science Bulletin, 2022, 67: 1232-1248 (in Chinese)

    Yang Shili, Zhong Yuhao, Yan Shiling, et al. A review of elastic plate wave metamaterials. Chinese Science Bulletin, 2022, 67: 1232-1248 (in Chinese)
    [4]
    Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science, 2000, 289(5485): 1734-1736 doi: 10.1126/science.289.5485.1734
    [5]
    Yang Z, Huang X. An acoustic cloaking design based on topology optimization. The Journal of the Acoustical Society of America, 2022, 152(6): 3510-3521 doi: 10.1121/10.0016493
    [6]
    Duan G, Zheng S, Lin ZK, et al. Numerical and experimental investigation of second-order mechanical topological insulators. Journal of the Mechanics and Physics of Solids, 2023, 174: 105251 doi: 10.1016/j.jmps.2023.105251
    [7]
    Liang B, Yuan B, Cheng JC. Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems. Physical Review Letters, 2009, 103(10): 104301 doi: 10.1103/PhysRevLett.103.104301
    [8]
    Xie Y, Konneker A, Popa BI, et al. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Applied Physics Letters, 2013, 103(20): 201906 doi: 10.1063/1.4831770
    [9]
    Ma G, Fan X, Sheng P, et al. Shaping reverberating sound fields with an actively tunable metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6638-6643
    [10]
    Bae MH, Oh JH. Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 139: 103930 doi: 10.1016/j.jmps.2020.103930
    [11]
    Zhou S, Lallart M, Erturk A. Multistable vibration energy harvesters: Principle, progress, and perspectives. Journal of Sound and Vibration, 2022, 528: 116886 doi: 10.1016/j.jsv.2022.116886
    [12]
    Yan B, Yu N, Wu C. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Applied Mathematics and Mechanics, 2022, 43(7): 1045-1062 doi: 10.1007/s10483-022-2868-5
    [13]
    方虹斌, 吴海平, 刘作林等. 折纸结构和折纸超材料动力学研究进展. 力学学报, 2022, 54(1): 1-38 (Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese) doi: 10.6052/0459-1879-21-478

    Fang Hongbin, Wu Haiping, Liu Zuolin, et al. Advances in the dynamics of origami structures and origami metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese) doi: 10.6052/0459-1879-21-478
    [14]
    Patil GU, Matlack KH. Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mechanica, 2022, 233: 1-46 doi: 10.1007/s00707-021-03089-z
    [15]
    王凯, 周加喜, 蔡昌琦等. 低频弹性波超材料的若干进展. 力学学报, 2022, 54(10): 2678-2694 (Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694 (in Chinese) doi: 10.6052/0459-1879-22-108

    Wang Kai, Zhou Jiaxi, Cai Changqi, et al. Review of low-frequency elastic wave metamaterials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2678-2694 (in Chinese) doi: 10.6052/0459-1879-22-108
    [16]
    Xia Y, Ruzzene M, Erturk A. Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Applied Physics Letters, 2019, 114: 093501 doi: 10.1063/1.5066329
    [17]
    Zhang X, Yu H, He Z, et al. A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 2021, 159: 107826 doi: 10.1016/j.ymssp.2021.107826
    [18]
    Fang X, Wen J, Bonello B, et al. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 2017, 8(1): 1288 doi: 10.1038/s41467-017-00671-9
    [19]
    Raney JR, Nadkarni N, Daraio C, et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proceedings of the National Academy of Sciences, 2016, 113(35): 9722-9727 doi: 10.1073/pnas.1604838113
    [20]
    Deng B, Wang P, He Q, et al. Metamaterials with amplitude gaps for elastic solitons. Nature Communications, 2018, 9(1): 3410 doi: 10.1038/s41467-018-05908-9
    [21]
    Wu Z, Wang KW. On the wave propagation analysis and supratransmission prediction of a metastable modular metastructure for non-reciprocal energy transmission. Journal of Sound and Vibration, 2019, 458: 389-406 doi: 10.1016/j.jsv.2019.06.032
    [22]
    Geniet F, Leon J. Energy transmission in the forbidden band gap of a nonlinear chain. Physical Review Letters, 2002, 89(13): 134102 doi: 10.1103/PhysRevLett.89.134102
    [23]
    Casimir HBG. On Onsager’s principle of microscopic reversibility. Reviews of Modern Physics, 1945, 17(2-3): 343 doi: 10.1103/RevModPhys.17.343
    [24]
    Fleury R, Sounas DL, Haberman MR, et al. Nonreciprocal acoustics. Acoustics Today, 2015, 11(3): 14-21
    [25]
    Nassar H, Yousefzadeh B, Fleury R, et al. Nonreciprocity in acoustic and elastic materials. Nature Reviews Materials, 2020, 5(9): 667-685 doi: 10.1038/s41578-020-0206-0
    [26]
    Liang B, Guo XS, Tu J, et al. An acoustic rectifier. Nature Materials, 2010, 9(12): 989-992 doi: 10.1038/nmat2881
    [27]
    Liu C, Du Z, Sun Z, et al. Frequency-preserved acoustic diode model with high forward-power-transmission rate. Physical Review Applied, 2015, 3(6): 064014 doi: 10.1103/PhysRevApplied.3.064014
    [28]
    Wu Z, Zheng Y, Wang KW. Metastable modular metastructures for on-demand reconfiguration of band structures and non-reciprocal wave propagation. Physical Review E, 2018, 97(2): 022209 doi: 10.1103/PhysRevE.97.022209
    [29]
    Li ZN, Wang YZ, Wang YS. Electro-mechanical coupling diode of elastic wave in nonlinear piezoelectric metamaterials. The Journal of the Acoustical Society of America, 2021, 150(2): 891-905 doi: 10.1121/10.0005817
    [30]
    Zheng Y, Tian W, Lee NKX, et al. A programmable macro-fiber-composite meta-ring with digital shunting circuits. Journal of Sound and Vibration, 2022, 533: 117017 doi: 10.1016/j.jsv.2022.117017
    [31]
    Dai S, Zheng Y, Mao J, et al. Vibro-acoustic control of a programmable meta-shell with digital piezoelectric shunting. International Journal of Mechanical Sciences, 2023, 255(800): 108475
    [32]
    Zheng Y, Chen B, Dai S, et al. Emergence of negative-dispersion passbands below the ring frequency of a piezoelectric meta-shell. Journal of Sound and Vibration, 2023, 545: 117447 doi: 10.1016/j.jsv.2022.117447
    [33]
    Marconi J, Riva E, Di Ronco M, et al. Experimental observation of nonreciprocal band gaps in a space-time-modulated beam using a shunted piezoelectric array. Physical Review Applied, 2020, 13(3): 031001 doi: 10.1103/PhysRevApplied.13.031001
    [34]
    易凯军, 陈洋洋, 朱睿等. 力电耦合主动超材料及其弹性波调控. 科学通报, 2022, 67(12): 1290-1304 (Yi Kaijun, Chen Yangyang, Zhu Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 2021, 67(12): 1290-1304 (in Chinese)

    Yi Kaijun, Chen Yangyang, Zhu Rui, et al. Electromechanical active metamaterials and their applications in controlling elastic wave propagation. Chinese Science Bulletin, 2021, 67(12): 1290-1304 (in Chinese)
    [35]
    袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望. 力学学报, 2021, 53(8): 2101-2116 (Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 (in Chinese) doi: 10.6052/0459-1879-21-198

    Yuan Yi, You Zhenyu, Chen Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116 (in Chinese) doi: 10.6052/0459-1879-21-198
    [36]
    李政阳, 王彦正, 马天雪等. 智能压电声子晶体与超材料研究现状与展望. 科学通报, 2022, 67: 1305-1325 (Li Zhengyang, Wang Yanzheng, Ma Tianxue, et al. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 2022, 67: 1305-1325 (in Chinese) doi: 10.1360/TB-2021-1265

    Li Zhengyang, Wang Yanzheng, Ma Tianxue, et al. Smart piezoelectric phononic crystals and metamaterials: State-of-the-art review and outlook. Chinese Science Bulletin, 2022, 67: 1305-1325 (in Chinese) doi: 10.1360/TB-2021-1265
    [37]
    Zheng Y, Wu Z, Zhang X, et al. A piezo-metastructure with bistable circuit shunts for adaptive nonreciprocal wave transmission. Smart Materials and Structures, 2019, 28(4): 045005 doi: 10.1088/1361-665X/ab083c
    [38]
    Sugino C, Leadenham S, Ruzzene M, et al. An investigation of electroelastic bandgap formation in locally resonant piezoelectric metastructures. Smart Materials and Structures, 2017, 26(5): 055029 doi: 10.1088/1361-665X/aa6671
    [39]
    Zheng Y, Zhang J, Qu Y, et al. Investigations of a piezoelectric metastructure using negative-resistance circuits to enhance the bandgap performance. Journal of Vibration and Control, 2022, 28(17-18): 2346-2356 doi: 10.1177/10775463211010540
  • Related Articles

    [1]NONLINEAR VIBRATION CONTROL OF DISCRETE DYNAMICS SYSTEMS BASED ON NON-HERMITIAN SKIN EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics.
    [2]Chen Haihua, Zhang Xianfeng, Zhao Wenjie, Gao Zhilin, Liu Chuang, Tan Mengting, Xiong Wei, Wang Haiying, Dai Lanhong. EFFECT OF MICROSTRUCTURE ON FLOW BEHAVIOR DURING PENETRATION OF W25Fe25Ni25Mo25 HIGH-ENTROPY ALLOY PROJECTILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140-2151. DOI: 10.6052/0459-1879-22-128
    [3]Liu Jun, Gao Fuping. HYSTERESIS IN VORTEX-INDUCED VIBRATIONS OF A NEAR-WALL CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1630-1640. DOI: 10.6052/0459-1879-19-293
    [4]Xiaoming Wang, Rongxing Wu, Heng Xiao. EXPLICIT MODELING THE HYSTERESIS LOOPS OF THE MULLINS EFFECT FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 484-493. DOI: 10.6052/0459-1879-18-334
    [5]Zhang Yi, Han Xiujing, Bi Qinsheng. SERIES-MODE PITCHFORK-HYSTERESIS BURSTING OSCILLATIONS AND THEIR DYNAMICAL MECHANISMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 228-236. DOI: 10.6052/0459-1879-18-223
    [6]Guo Hongbao, Jia Purong, Wang Bo, Jiao Guiqiong, Zeng Zeng. STUDY ON CONSTITUENT PROPERTIES OF A 2D-SiC/SiC COMPOSITE BY HYSTERESIS MEASURMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 260-269. DOI: 10.6052/0459-1879-14-247
    [7]Li Longbiao. INVESTIGATION ON FATIGUE HYSTERESIS LOOPS MODELS OF FIBRE-REINFORCED CERAMIC-MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 710-729. DOI: 10.6052/0459-1879-13-332
    [8]Peng Bai Qian Chen Liu Xinyu Feng Li. Unsteady dynamic aerodynamic hysteresis effects and linear modeling about the slide-skin swept-angle morphing wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1020-1029. DOI: 10.6052/0459-1879-2011-6-lxxb2011-125
    [9]On hysteresis and retardation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 740-746. DOI: 10.6052/0459-1879-2010-4-lxxb2009-414
    [10]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086

Catalog

    Article Metrics

    Article views (187) PDF downloads (68) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return