EI、Scopus 收录
中文核心期刊
Xu Yongqi, Peng Zerui, Zhou Xinping. Research progress on drop impact on flexible substrates. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1529-1539. DOI: 10.6052/0459-1879-23-603
Citation: Xu Yongqi, Peng Zerui, Zhou Xinping. Research progress on drop impact on flexible substrates. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1529-1539. DOI: 10.6052/0459-1879-23-603

RESEARCH PROGRESS ON DROP IMPACT ON FLEXIBLE SUBSTRATES

  • Received Date: December 14, 2023
  • Accepted Date: January 08, 2024
  • Available Online: January 08, 2024
  • Published Date: January 09, 2024
  • The phenomenon of drop impact on solid substrates is highly prevalent, widely observed in nature, daily life, and industrial production process. In the majority of practical liquid droplet impact scenarios, the substrate can be approximated as an ideal rigid substrate. However, in some certain scenarios, solid substrates with a smaller Young's modulus or geometric structures characterized by thin walls or elongated forms undergo significant deformation upon being impacted by liquid droplets. At this point, such an approximation is no longer applicable at all. The deformation of the solid substrate, in turn, affects the dynamics of the liquid droplet. Compared to the impact of liquid droplets on rigid substrates, the impact of liquid droplets on flexible substrates is a more complex fluid-structure coupling phenomenon, and this coupling interaction between liquid droplets and flexible substrates may give rise to new dynamic mechanisms, which may lead to different droplet dynamics. Therefore, the study of the impact dynamics of liquid droplets on flexible substrates is meaningful, and it has become one of the current research focuses of some scholars. Based on the geometric characteristics of flexible substrates, they can be categorized into three fundamental types: flexible bodies, flexible surfaces, and flexible rods. This article introduces relevant research progress on liquid droplet impact on flexible substrates according to this classification. The deformability of flexible substrates is the fundamental reason for the differences in the dynamics of liquid droplets on flexible substrates compared to the dynamics on rigid substrates. Existing researches show that substrate flexibility has an effect on various aspects of droplet dynamics, including contact time, maximum spreading factor, bubbles capture, drop rebound, and splashing. Some researchers have suggested that the impact of liquid droplets on appropriately flexible substrates can effectively reduce contact time and suppress splashing phenomena, which may offer new insights for manufacturing materials requiring waterproofing, anti-icing, and splash resistance.
  • [1]
    Yarin AL. Drop impact dynamics: splashing, spreading, receding, bouncing.. Annual Review of Fluid Mechanics, 2006, 38: 159-192 doi: 10.1146/annurev.fluid.38.050304.092144
    [2]
    Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
    [3]
    Li J, Oron A, Jiang Y. Droplet jump-off force on a superhydrophobic surface. Physical Review Fluids, 2023, 8(11): 113601 doi: 10.1103/PhysRevFluids.8.113601
    [4]
    Worthington AM. XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proceedings of the Royal Society of London, 1877, 25(171-178): 261-272
    [5]
    Thoroddsen ST, Etoh TG, Takehara K. High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 2008, 40: 257-285 doi: 10.1146/annurev.fluid.40.111406.102215
    [6]
    李海龙. 液滴动力学中多相流固耦合算法和复杂界面效应研究. [博士论文]. 合肥: 中国科学技术大学, 2022 (Li Hailong. Multiphase fluid-structure interaction algorithm and complex interface effects in droplet dynamics. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)

    Li Hailong. Multiphase fluid-structure interaction algorithm and complex interface effects in droplet dynamics. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)
    [7]
    林世玑. 液滴碰撞过程中的跨尺度界面流动行为研究. [博士论文]. 成都: 电子科技大学, 2022 (Lin Shiji. Research on cross-scale interfacial flow dynamics of impinging drops. [PhD Thesis]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese)

    Lin Shiji. Research on cross-scale interfacial flow dynamics of impinging drops. [PhD Thesis]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese)
    [8]
    Mittal R, Ni R, Seo JH. The flow physics of COVID-19. Journal of Fluid Mechanics, 2020, 894: F2
    [9]
    Sharma S, Pinto R, Saha A, et al. On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Science Advances, 2021, 7(10): eabf0452 doi: 10.1126/sciadv.abf0452
    [10]
    Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382 doi: 10.1146/annurev-fluid-022321-114001
    [11]
    朱阳. 液滴与复杂壁面作用的动力学及流固耦合研究. [博士论文]. 合肥: 中国科学技术大学, 2019 (Zhu Yang. Dynamics of drop impact onto complex surface and their interaction. [PhD thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese)

    Zhu Yang. Dynamics of drop impact onto complex surface and their interaction. [PhD thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese)
    [12]
    Beulen B, Jong J, Reinten H, et al. Flows on the nozzle plate of an inkjet printhead. Experiments in Fluids, 2007, 42: 217-224 doi: 10.1007/s00348-006-0232-8
    [13]
    Tian Y, Liu Y, Peng Z, et al. Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields. Journal of Fluid Mechanics, 2022, 946: A21 doi: 10.1017/jfm.2022.439
    [14]
    Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 2001, 11(2): 155-166
    [15]
    Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002, 33(1): 112-124 doi: 10.1007/s00348-002-0431-x
    [16]
    Caviezel D, Narayanan C, Lakehal D. Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluidics and Nanofluidics, 2008, 5: 469-478 doi: 10.1007/s10404-007-0248-2
    [17]
    Schaarsberg MHK, Peters IR, Stern M, et al. From splashing to bouncing: The influence of viscosity on the impact of suspension droplets on a solid surface. Physical Review E, 2016, 93(6): 062609 doi: 10.1103/PhysRevE.93.062609
    [18]
    Jia W, Zhu H. Dynamics of water droplet impact and spread on soybean leaves. Transactions of the ASABE, 2015, 58(4): 1109-1016
    [19]
    Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature, 2010, 463(7281): 640-643 doi: 10.1038/nature08729
    [20]
    Dickerson AK, Shankles PG, Hu DL. Raindrops push and splash flying insects. Physics of Fluids, 2014, 26(2): 027104
    [21]
    Mohammad KA. Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14(11): 1-21
    [22]
    Bico J, Reyssat É, Roman B. Elastocapillarity: When surface tension deforms elastic solids. Annual Review of Fluid Mechanics, 2018, 50: 629-659 doi: 10.1146/annurev-fluid-122316-050130
    [23]
    Pepper RE, Courbin L, Stone HA. Splashing on elastic membranes: The importance of early-time dynamics. Physics of Fluids, 2008, 20(8): 082103
    [24]
    Weisensee PB, Tian J, Miljkovic N, et al. Water droplet impact on elastic superhydrophobic surfaces. Scientific Reports, 2016, 6(1): 30328 doi: 10.1038/srep30328
    [25]
    Vasileiou T, Gerber J, Prautzsch J, et al. Superhydrophobicity enhancement through substrate flexibility. Proceedings of the National Academy of Sciences, 2016, 113(47): 13307-13312 doi: 10.1073/pnas.1611631113
    [26]
    Vasileiou T, Schutzius TM, Poulikakos D. Imparting icephobicity with substrate flexibility. Langmuir, 2017, 33(27): 6708-6718 doi: 10.1021/acs.langmuir.7b01412
    [27]
    Chantelot P, Coux M, Clanet C, et al. Drop trampoline. Europhysics Letters, 2018, 124(2): 24003 doi: 10.1209/0295-5075/124/24003
    [28]
    Kim JH, Rothstein JP, Shang JK. Dynamics of a flexible superhydrophobic surface during a drop impact. Physics of Fluids, 2018, 30(7): 072102
    [29]
    Xiong Y, Huang H, Lu XY. Numerical study of droplet impact on a flexible substrate. Physical Review E, 2020, 101(5): 053107 doi: 10.1103/PhysRevE.101.053107
    [30]
    Ma Y, Huang H. Scaling maximum spreading of droplet impacting on flexible substrates. Journal of Fluid Mechanics, 2023, 958: A35 doi: 10.1017/jfm.2023.124
    [31]
    Soto D, De Lariviere AB, Boutillon X, et al. The force of impacting rain. Soft Matter, 2014, 10(27): 4929-4934 doi: 10.1039/C4SM00513A
    [32]
    Gart S, Mates JE, Megaridis CM, et al. Droplet impacting a cantilever: A leaf-raindrop system. Physical Review Applied, 2015, 3(4): 044019 doi: 10.1103/PhysRevApplied.3.044019
    [33]
    Gilet T, Bourouiba L. Fluid fragmentation shapes rain-induced foliar disease transmission. Journal of the Royal Society Interface, 2015, 12(104): 20141092 doi: 10.1098/rsif.2014.1092
    [34]
    Pegg M, Purvis R, Korobkin A. Droplet impact onto an elastic plate: a new mechanism for splashing. Journal of Fluid Mechanics, 2018, 839: 561-593 doi: 10.1017/jfm.2018.60
    [35]
    Huang X, Dong X, Li J, et al. Droplet impact induced large deflection of a cantilever. Physics of Fluids, 2019, 31(6): 062106
    [36]
    Dong X, Huang X, Liu J. Modeling and simulation of droplet impact on elastic beams based on SPH. European Journal of Mechanics-A/Solids, 2019, 75: 237-257 doi: 10.1016/j.euromechsol.2019.01.026
    [37]
    Upadhyay G, Kumar V, Bhardwaj R. Bouncing droplets on an elastic, superhydrophobic cantilever beam. Physics of Fluids, 2021, 33(4): 042104
    [38]
    Kim C, Yoon I, Choi G, et al. Deflection analysis of flexible cantilever beam with a drop impact. International Journal of Aeronautical and Space Sciences, 2023, 24(4): 1054-1062
    [39]
    Zhang B, Sanjay V, Shi S, et al. Impact forces of water drops falling on superhydrophobic surfaces. Physical Review Letters, 2022, 129(10): 104501 doi: 10.1103/PhysRevLett.129.104501
    [40]
    Scheller BL, Bousfield DW. Newtonian drop impact with a solid surface. AIChE Journal, 1995, 41(6): 1357-1367 doi: 10.1002/aic.690410602
    [41]
    Pasandideh-Fard M, Qiao YM, Chandra S, et al. Capillary effects during droplet impact on a solid surface. Physics of Fluids, 1996, 8(3): 650-659 doi: 10.1063/1.868850
    [42]
    Clanet C, Béguin C, Richard D, et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517: 199-208 doi: 10.1017/S0022112004000904
    [43]
    Ukiwe C, Kwok DY. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir, 2005, 21(2): 666-673 doi: 10.1021/la0481288
    [44]
    Roisman IV. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009, 21(5): 052104
    [45]
    Eggers J, Fontelos MA, Josserand C, et al. Drop dynamics after impact on a solid wall: theory and simulations. Physics of Fluids, 2010, 22(6): 062101
    [46]
    Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2(4): 044018 doi: 10.1103/PhysRevApplied.2.044018
    [47]
    Lee JB, Laan N, de Bruin KG, et al. Universal rescaling of drop impact on smooth and rough surfaces. Journal of Fluid Mechanics, 2016, 786: R4 doi: 10.1017/jfm.2015.620
    [48]
    Gawadi AG, Avery Jr GS. Leaf abscission and the so-called" abscission layer". American Journal of Botany, 1950, 37(2): 172-180
    [49]
    Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. The New Phytologist, 1998, 138(1): 91-98 doi: 10.1046/j.1469-8137.1998.00882.x
    [50]
    Li N, Zhou Q, Chen X, et al. Liquid drop impact on solid surface with application to water drop erosion on turbine blades. Part I: Nonlinear wave model and solution of one-dimensional impact. International Journal of Mechanical Sciences, 2008, 50(10-11): 1526-1542 doi: 10.1016/j.ijmecsci.2008.08.001
    [51]
    Rioboo R, Voue M, Adao H, et al. Drop impact on soft surfaces: Beyond the static contact angles. Langmuir, 2010, 26(7): 4873-4879 doi: 10.1021/la9036953
    [52]
    Chen L, Li Z. Bouncing droplets on nonsuperhydrophobic surfaces. Physical Review E, 2010, 82(1): 016308 doi: 10.1103/PhysRevE.82.016308
    [53]
    Chen L, Wu J, Li Z, et al. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1-3): 726-732 doi: 10.1016/j.colsurfa.2011.05.046
    [54]
    Mangili S, Antonini C, Marengo M, et al. Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter, 2012, 8(39): 10045-10054 doi: 10.1039/c2sm26049b
    [55]
    Alizadeh A, Bahadur V, Shang W, et al. Influence of substrate elasticity on droplet impact dynamics. Langmuir, 2013, 29(14): 4520-4524 doi: 10.1021/la304767t
    [56]
    Lu Y, Sathasivam S, Song J, et al. Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry A, 2014, 2(31): 12177-12184 doi: 10.1039/C4TA02391A
    [57]
    Chen L, Bonaccurso E, Deng P, et al. Droplet impact on soft viscoelastic surfaces. Physical Review E, 2016, 94(6): 063117 doi: 10.1103/PhysRevE.94.063117
    [58]
    Howland CJ, Antkowiak A, Castrejón-Pita JR, et al. It’s harder to splash on soft solids. Physical Review Letters, 2016, 117(18): 184502 doi: 10.1103/PhysRevLett.117.184502
    [59]
    Liu Y, Ma L, Wang W, et al. An experimental study on soft PDMS materials for aircraft icing mitigation. Applied Surface Science, 2018, 447: 599-609 doi: 10.1016/j.apsusc.2018.04.032
    [60]
    Huang L, Song J, Wang X, et al. Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347: 420-426 doi: 10.1016/j.surfcoat.2018.05.019
    [61]
    Langley KR, Castrejón-Pita AA, Thoroddsen ST. Droplet impacts onto soft solids entrap more air. Soft Matter, 2020, 16(24): 5702-5710 doi: 10.1039/D0SM00713G
    [62]
    Lorenceau É, Clanet C, Quéré D. Capturing drops with a thin fiber. Journal of Colloid and Interface Science, 2004, 279(1): 192-197 doi: 10.1016/j.jcis.2004.06.054
    [63]
    Comtet J, Keshavarz B, Bush JWM. Drop impact and capture on a thin flexible fiber. Soft Matter, 2016, 12(1): 149-156 doi: 10.1039/C5SM02037A
    [64]
    Dressaire E, Sauret A, Boulogne F, et al. Drop impact on a flexible fiber. Soft Matter, 2016, 12(1): 200-208 doi: 10.1039/C5SM02246K
    [65]
    Zhu P, Wang W, Chen X, et al. Experimental study of drop impact on a thin fiber. Physics of Fluids, 2019, 31(10): 107102
    [66]
    Coux M, Kolinski JM. Surface textures suppress viscoelastic braking on soft substrates. Proceedings of the National Academy of Sciences, 2020, 117(51): 32285-32292 doi: 10.1073/pnas.2008683117
    [67]
    Dev AA, Dey R, Mugele F. Behaviour of flexible superhydrophobic striped surfaces during (electro-) wetting of a sessile drop. Soft Matter, 2019, 15(48): 9840-9848 doi: 10.1039/C9SM01663E
    [68]
    Liu B, Tang J, Li J, et al. Soft wetting: Modified Cassie-Baxter equation for soft superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677: 132348 doi: 10.1016/j.colsurfa.2023.132348
  • Related Articles

    [1]Tong Ying, Mu Yongfei, Liu Fan, Xiao Zhongyun, Lei Yongqiang. FLUID STRUCTURE INTERACTION SIMULATION BASED ON IB-LBFS AND NFE FOR LARGE DEFORMATION MEMBRANE[J]. Chinese Journal of Theoretical and Applied Mechanics. DOI: 10.6052/0459-1879-24-446
    [2]Hao Qi, Yang Dongsheng, Eloi Pineda, Vitaly A. Khonik, Qiao Jichao. ANALYSIS OF ELASTIC MODULUS CHARACTERISTICS AND STRUCTURAL STATE EVOLUTION IN AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 948-957. DOI: 10.6052/0459-1879-24-536
    [3]Du Shuheng, Shen Wenhao, Zhao Ya-Pu. QUANTITATIVE EVALUATION OF STRESS SENSITIVITY IN SHALE RESERVOIRS: IDEAS AND APPLICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2235-2247. DOI: 10.6052/0459-1879-22-262
    [4]Chen Shan, Peng Jinfeng, Huang Le, Zeng Xin, Li Lihao, He Wenyuan, Zheng Xuejun. THE FINITE THICKNESS MODEL CALIBRATES THE BIMODAL-AFM YOUNG'S MODULUS MEASUREMENTS OF THE TWO-DIMENSIONAL MoS2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1264-1273. DOI: 10.6052/0459-1879-22-034
    [5]Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233
    [6]Chen Daiheng Yang Lu. Analysis of equivalent elastic modulus of a honeycomb sandwich[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 514-522. DOI: 10.6052/0459-1879-2011-3-lxxb2010-113
    [7]Zhang Weihong Luo Jinwei Dai Gaoming Zhang Jin. Numerical predictions of effective shear modulus and size effect for periodic cellular materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 144-153. DOI: 10.6052/0459-1879-2011-1-lxxb2009-694
    [8]Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113
    [9]The incremental Young's moduli in the rat small intestine caused by[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 171-176. DOI: 10.6052/0459-1879-2004-2-2003-188
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(1)

    1. 王太,孙亦铁,李晟瑞,刘璐,闫润,王腾. 液滴撞击高温球面的动力学及传热特性分析. 力学学报. 2025(03): 593-604 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (438) PDF downloads (144) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return