Citation: | Xu Yongqi, Peng Zerui, Zhou Xinping. Research progress on drop impact on flexible substrates. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1529-1539. DOI: 10.6052/0459-1879-23-603 |
[1] |
Yarin AL. Drop impact dynamics: splashing, spreading, receding, bouncing.. Annual Review of Fluid Mechanics, 2006, 38: 159-192 doi: 10.1146/annurev.fluid.38.050304.092144
|
[2] |
Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
|
[3] |
Li J, Oron A, Jiang Y. Droplet jump-off force on a superhydrophobic surface. Physical Review Fluids, 2023, 8(11): 113601 doi: 10.1103/PhysRevFluids.8.113601
|
[4] |
Worthington AM. XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proceedings of the Royal Society of London, 1877, 25(171-178): 261-272
|
[5] |
Thoroddsen ST, Etoh TG, Takehara K. High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 2008, 40: 257-285 doi: 10.1146/annurev.fluid.40.111406.102215
|
[6] |
李海龙. 液滴动力学中多相流固耦合算法和复杂界面效应研究. [博士论文]. 合肥: 中国科学技术大学, 2022 (Li Hailong. Multiphase fluid-structure interaction algorithm and complex interface effects in droplet dynamics. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)
Li Hailong. Multiphase fluid-structure interaction algorithm and complex interface effects in droplet dynamics. [PhD Thesis]. Hefei: University of Science and Technology of China, 2022 (in Chinese)
|
[7] |
林世玑. 液滴碰撞过程中的跨尺度界面流动行为研究. [博士论文]. 成都: 电子科技大学, 2022 (Lin Shiji. Research on cross-scale interfacial flow dynamics of impinging drops. [PhD Thesis]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese)
Lin Shiji. Research on cross-scale interfacial flow dynamics of impinging drops. [PhD Thesis]. Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese)
|
[8] |
Mittal R, Ni R, Seo JH. The flow physics of COVID-19. Journal of Fluid Mechanics, 2020, 894: F2
|
[9] |
Sharma S, Pinto R, Saha A, et al. On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Science Advances, 2021, 7(10): eabf0452 doi: 10.1126/sciadv.abf0452
|
[10] |
Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382 doi: 10.1146/annurev-fluid-022321-114001
|
[11] |
朱阳. 液滴与复杂壁面作用的动力学及流固耦合研究. [博士论文]. 合肥: 中国科学技术大学, 2019 (Zhu Yang. Dynamics of drop impact onto complex surface and their interaction. [PhD thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese)
Zhu Yang. Dynamics of drop impact onto complex surface and their interaction. [PhD thesis]. Hefei: University of Science and Technology of China, 2019 (in Chinese)
|
[12] |
Beulen B, Jong J, Reinten H, et al. Flows on the nozzle plate of an inkjet printhead. Experiments in Fluids, 2007, 42: 217-224 doi: 10.1007/s00348-006-0232-8
|
[13] |
Tian Y, Liu Y, Peng Z, et al. Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields. Journal of Fluid Mechanics, 2022, 946: A21 doi: 10.1017/jfm.2022.439
|
[14] |
Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization and Sprays, 2001, 11(2): 155-166
|
[15] |
Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002, 33(1): 112-124 doi: 10.1007/s00348-002-0431-x
|
[16] |
Caviezel D, Narayanan C, Lakehal D. Adherence and bouncing of liquid droplets impacting on dry surfaces. Microfluidics and Nanofluidics, 2008, 5: 469-478 doi: 10.1007/s10404-007-0248-2
|
[17] |
Schaarsberg MHK, Peters IR, Stern M, et al. From splashing to bouncing: The influence of viscosity on the impact of suspension droplets on a solid surface. Physical Review E, 2016, 93(6): 062609 doi: 10.1103/PhysRevE.93.062609
|
[18] |
Jia W, Zhu H. Dynamics of water droplet impact and spread on soybean leaves. Transactions of the ASABE, 2015, 58(4): 1109-1016
|
[19] |
Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature, 2010, 463(7281): 640-643 doi: 10.1038/nature08729
|
[20] |
Dickerson AK, Shankles PG, Hu DL. Raindrops push and splash flying insects. Physics of Fluids, 2014, 26(2): 027104
|
[21] |
Mohammad KA. Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14(11): 1-21
|
[22] |
Bico J, Reyssat É, Roman B. Elastocapillarity: When surface tension deforms elastic solids. Annual Review of Fluid Mechanics, 2018, 50: 629-659 doi: 10.1146/annurev-fluid-122316-050130
|
[23] |
Pepper RE, Courbin L, Stone HA. Splashing on elastic membranes: The importance of early-time dynamics. Physics of Fluids, 2008, 20(8): 082103
|
[24] |
Weisensee PB, Tian J, Miljkovic N, et al. Water droplet impact on elastic superhydrophobic surfaces. Scientific Reports, 2016, 6(1): 30328 doi: 10.1038/srep30328
|
[25] |
Vasileiou T, Gerber J, Prautzsch J, et al. Superhydrophobicity enhancement through substrate flexibility. Proceedings of the National Academy of Sciences, 2016, 113(47): 13307-13312 doi: 10.1073/pnas.1611631113
|
[26] |
Vasileiou T, Schutzius TM, Poulikakos D. Imparting icephobicity with substrate flexibility. Langmuir, 2017, 33(27): 6708-6718 doi: 10.1021/acs.langmuir.7b01412
|
[27] |
Chantelot P, Coux M, Clanet C, et al. Drop trampoline. Europhysics Letters, 2018, 124(2): 24003 doi: 10.1209/0295-5075/124/24003
|
[28] |
Kim JH, Rothstein JP, Shang JK. Dynamics of a flexible superhydrophobic surface during a drop impact. Physics of Fluids, 2018, 30(7): 072102
|
[29] |
Xiong Y, Huang H, Lu XY. Numerical study of droplet impact on a flexible substrate. Physical Review E, 2020, 101(5): 053107 doi: 10.1103/PhysRevE.101.053107
|
[30] |
Ma Y, Huang H. Scaling maximum spreading of droplet impacting on flexible substrates. Journal of Fluid Mechanics, 2023, 958: A35 doi: 10.1017/jfm.2023.124
|
[31] |
Soto D, De Lariviere AB, Boutillon X, et al. The force of impacting rain. Soft Matter, 2014, 10(27): 4929-4934 doi: 10.1039/C4SM00513A
|
[32] |
Gart S, Mates JE, Megaridis CM, et al. Droplet impacting a cantilever: A leaf-raindrop system. Physical Review Applied, 2015, 3(4): 044019 doi: 10.1103/PhysRevApplied.3.044019
|
[33] |
Gilet T, Bourouiba L. Fluid fragmentation shapes rain-induced foliar disease transmission. Journal of the Royal Society Interface, 2015, 12(104): 20141092 doi: 10.1098/rsif.2014.1092
|
[34] |
Pegg M, Purvis R, Korobkin A. Droplet impact onto an elastic plate: a new mechanism for splashing. Journal of Fluid Mechanics, 2018, 839: 561-593 doi: 10.1017/jfm.2018.60
|
[35] |
Huang X, Dong X, Li J, et al. Droplet impact induced large deflection of a cantilever. Physics of Fluids, 2019, 31(6): 062106
|
[36] |
Dong X, Huang X, Liu J. Modeling and simulation of droplet impact on elastic beams based on SPH. European Journal of Mechanics-A/Solids, 2019, 75: 237-257 doi: 10.1016/j.euromechsol.2019.01.026
|
[37] |
Upadhyay G, Kumar V, Bhardwaj R. Bouncing droplets on an elastic, superhydrophobic cantilever beam. Physics of Fluids, 2021, 33(4): 042104
|
[38] |
Kim C, Yoon I, Choi G, et al. Deflection analysis of flexible cantilever beam with a drop impact. International Journal of Aeronautical and Space Sciences, 2023, 24(4): 1054-1062
|
[39] |
Zhang B, Sanjay V, Shi S, et al. Impact forces of water drops falling on superhydrophobic surfaces. Physical Review Letters, 2022, 129(10): 104501 doi: 10.1103/PhysRevLett.129.104501
|
[40] |
Scheller BL, Bousfield DW. Newtonian drop impact with a solid surface. AIChE Journal, 1995, 41(6): 1357-1367 doi: 10.1002/aic.690410602
|
[41] |
Pasandideh-Fard M, Qiao YM, Chandra S, et al. Capillary effects during droplet impact on a solid surface. Physics of Fluids, 1996, 8(3): 650-659 doi: 10.1063/1.868850
|
[42] |
Clanet C, Béguin C, Richard D, et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517: 199-208 doi: 10.1017/S0022112004000904
|
[43] |
Ukiwe C, Kwok DY. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir, 2005, 21(2): 666-673 doi: 10.1021/la0481288
|
[44] |
Roisman IV. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009, 21(5): 052104
|
[45] |
Eggers J, Fontelos MA, Josserand C, et al. Drop dynamics after impact on a solid wall: theory and simulations. Physics of Fluids, 2010, 22(6): 062101
|
[46] |
Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2(4): 044018 doi: 10.1103/PhysRevApplied.2.044018
|
[47] |
Lee JB, Laan N, de Bruin KG, et al. Universal rescaling of drop impact on smooth and rough surfaces. Journal of Fluid Mechanics, 2016, 786: R4 doi: 10.1017/jfm.2015.620
|
[48] |
Gawadi AG, Avery Jr GS. Leaf abscission and the so-called" abscission layer". American Journal of Botany, 1950, 37(2): 172-180
|
[49] |
Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. The New Phytologist, 1998, 138(1): 91-98 doi: 10.1046/j.1469-8137.1998.00882.x
|
[50] |
Li N, Zhou Q, Chen X, et al. Liquid drop impact on solid surface with application to water drop erosion on turbine blades. Part I: Nonlinear wave model and solution of one-dimensional impact. International Journal of Mechanical Sciences, 2008, 50(10-11): 1526-1542 doi: 10.1016/j.ijmecsci.2008.08.001
|
[51] |
Rioboo R, Voue M, Adao H, et al. Drop impact on soft surfaces: Beyond the static contact angles. Langmuir, 2010, 26(7): 4873-4879 doi: 10.1021/la9036953
|
[52] |
Chen L, Li Z. Bouncing droplets on nonsuperhydrophobic surfaces. Physical Review E, 2010, 82(1): 016308 doi: 10.1103/PhysRevE.82.016308
|
[53] |
Chen L, Wu J, Li Z, et al. Evolution of entrapped air under bouncing droplets on viscoelastic surfaces. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1-3): 726-732 doi: 10.1016/j.colsurfa.2011.05.046
|
[54] |
Mangili S, Antonini C, Marengo M, et al. Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter, 2012, 8(39): 10045-10054 doi: 10.1039/c2sm26049b
|
[55] |
Alizadeh A, Bahadur V, Shang W, et al. Influence of substrate elasticity on droplet impact dynamics. Langmuir, 2013, 29(14): 4520-4524 doi: 10.1021/la304767t
|
[56] |
Lu Y, Sathasivam S, Song J, et al. Water droplets bouncing on superhydrophobic soft porous materials. Journal of Materials Chemistry A, 2014, 2(31): 12177-12184 doi: 10.1039/C4TA02391A
|
[57] |
Chen L, Bonaccurso E, Deng P, et al. Droplet impact on soft viscoelastic surfaces. Physical Review E, 2016, 94(6): 063117 doi: 10.1103/PhysRevE.94.063117
|
[58] |
Howland CJ, Antkowiak A, Castrejón-Pita JR, et al. It’s harder to splash on soft solids. Physical Review Letters, 2016, 117(18): 184502 doi: 10.1103/PhysRevLett.117.184502
|
[59] |
Liu Y, Ma L, Wang W, et al. An experimental study on soft PDMS materials for aircraft icing mitigation. Applied Surface Science, 2018, 447: 599-609 doi: 10.1016/j.apsusc.2018.04.032
|
[60] |
Huang L, Song J, Wang X, et al. Soft elastic superhydrophobic cotton: A new material for contact time reduction in droplet bouncing. Surface and Coatings Technology, 2018, 347: 420-426 doi: 10.1016/j.surfcoat.2018.05.019
|
[61] |
Langley KR, Castrejón-Pita AA, Thoroddsen ST. Droplet impacts onto soft solids entrap more air. Soft Matter, 2020, 16(24): 5702-5710 doi: 10.1039/D0SM00713G
|
[62] |
Lorenceau É, Clanet C, Quéré D. Capturing drops with a thin fiber. Journal of Colloid and Interface Science, 2004, 279(1): 192-197 doi: 10.1016/j.jcis.2004.06.054
|
[63] |
Comtet J, Keshavarz B, Bush JWM. Drop impact and capture on a thin flexible fiber. Soft Matter, 2016, 12(1): 149-156 doi: 10.1039/C5SM02037A
|
[64] |
Dressaire E, Sauret A, Boulogne F, et al. Drop impact on a flexible fiber. Soft Matter, 2016, 12(1): 200-208 doi: 10.1039/C5SM02246K
|
[65] |
Zhu P, Wang W, Chen X, et al. Experimental study of drop impact on a thin fiber. Physics of Fluids, 2019, 31(10): 107102
|
[66] |
Coux M, Kolinski JM. Surface textures suppress viscoelastic braking on soft substrates. Proceedings of the National Academy of Sciences, 2020, 117(51): 32285-32292 doi: 10.1073/pnas.2008683117
|
[67] |
Dev AA, Dey R, Mugele F. Behaviour of flexible superhydrophobic striped surfaces during (electro-) wetting of a sessile drop. Soft Matter, 2019, 15(48): 9840-9848 doi: 10.1039/C9SM01663E
|
[68] |
Liu B, Tang J, Li J, et al. Soft wetting: Modified Cassie-Baxter equation for soft superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677: 132348 doi: 10.1016/j.colsurfa.2023.132348
|
[1] | Tong Ying, Mu Yongfei, Liu Fan, Xiao Zhongyun, Lei Yongqiang. FLUID STRUCTURE INTERACTION SIMULATION BASED ON IB-LBFS AND NFE FOR LARGE DEFORMATION MEMBRANE[J]. Chinese Journal of Theoretical and Applied Mechanics. DOI: 10.6052/0459-1879-24-446 |
[2] | Hao Qi, Yang Dongsheng, Eloi Pineda, Vitaly A. Khonik, Qiao Jichao. ANALYSIS OF ELASTIC MODULUS CHARACTERISTICS AND STRUCTURAL STATE EVOLUTION IN AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 948-957. DOI: 10.6052/0459-1879-24-536 |
[3] | Du Shuheng, Shen Wenhao, Zhao Ya-Pu. QUANTITATIVE EVALUATION OF STRESS SENSITIVITY IN SHALE RESERVOIRS: IDEAS AND APPLICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2235-2247. DOI: 10.6052/0459-1879-22-262 |
[4] | Chen Shan, Peng Jinfeng, Huang Le, Zeng Xin, Li Lihao, He Wenyuan, Zheng Xuejun. THE FINITE THICKNESS MODEL CALIBRATES THE BIMODAL-AFM YOUNG'S MODULUS MEASUREMENTS OF THE TWO-DIMENSIONAL MoS2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1264-1273. DOI: 10.6052/0459-1879-22-034 |
[5] | Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233 |
[6] | Chen Daiheng Yang Lu. Analysis of equivalent elastic modulus of a honeycomb sandwich[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 514-522. DOI: 10.6052/0459-1879-2011-3-lxxb2010-113 |
[7] | Zhang Weihong Luo Jinwei Dai Gaoming Zhang Jin. Numerical predictions of effective shear modulus and size effect for periodic cellular materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 144-153. DOI: 10.6052/0459-1879-2011-1-lxxb2009-694 |
[8] | Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113 |
[9] | The incremental Young's moduli in the rat small intestine caused by[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 171-176. DOI: 10.6052/0459-1879-2004-2-2003-188 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
1. |
王太,孙亦铁,李晟瑞,刘璐,闫润,王腾. 液滴撞击高温球面的动力学及传热特性分析. 力学学报. 2025(03): 593-604 .
![]() |