EI、Scopus 收录
中文核心期刊
Huang Yanru, Huang Ruiwen, Ma Xue, Li Zhenzhen, Teng Honghui. Review of solutal Marangoni spreading on free surface. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1511-1528. DOI: 10.6052/0459-1879-23-532
Citation: Huang Yanru, Huang Ruiwen, Ma Xue, Li Zhenzhen, Teng Honghui. Review of solutal Marangoni spreading on free surface. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1511-1528. DOI: 10.6052/0459-1879-23-532

REVIEW OF SOLUTAL MARANGONI SPREADING ON FREE SURFACE

  • Received Date: November 08, 2023
  • Accepted Date: December 15, 2023
  • Available Online: December 15, 2023
  • Published Date: December 16, 2023
  • Marangoni flow is the interfacial spreading driven by an uneven distribution of surface tension. While it consists a shear flow at the interface, it may also induce severe interfacial deformation in case of spreading on a thin film, and fluid convection in case of spreading on a thick layer. The surface tension gradient can be modulated by the nonuniform distribution of temperature or of solutes, such as surfactant molecules and components that are miscible with the substrate. Solutal Marangoni spreading has important applications in biomedical fields such as the drug delivery in human airways, as well as in advanced manufacturing fields such as the formation of particles with complex structure and surface coating. Some physicochemical processes of solute molecules can affect the dynamics of Marangoni spreading, for instance, the transport of molecules at the interface, the mass exchange between the droplet and the substrate, and the evaporation of volatile solutes at the free liquid surface, which modulate the surface tension gradient instantaneously. In addition, under the combined effects of the rheological properties of the liquids and the strong shear rate induced by Marangoni spreading, the fluids may exhibit a series of complex and interesting phenomena. Based on the review article on solutal Marangoni spreading published by Matar and Craster in 2009, this review summarizes works reported on solutal Marangoni spreading in recent years, including surfactant-assisted spreading with modulated solubility, Marangoni spreading at interface of miscible liquids, and on free surfaces of complex fluids, as well as Marangoni spreading due to selective evaporation of one component in a fluid mixture. Phenomena will be presented and the mechanisms will be discussed. Finally, this review will enumerate the applications of Marangoni spreading in emerging industrial fields to provide references for developing low-energy devices and production processes that utilize the physicochemical properties of liquids.
  • [1]
    Schwarzenberger K, Köllner T, Linde H, et al. Pattern formation and mass transfer under stationary solutal Marangoni instability. Advances in Colloid and Interface Science, 2014, 206: 344-371 doi: 10.1016/j.cis.2013.10.003
    [2]
    张胜寒, 韩晓雪. 颗粒亲水性对纳米流体表面张力的影响研究进展. 化工新型材料, 2018, 46(5): 38-43 (Zhang Shenghan, Han Xiaoxue. Advance in influence of hydrophilic particle on surface tension of nanofluid. New Chemical Materials, 2018, 46(5): 38-43 (in Chinese)

    Zhang Shenghan, Han Xiaoxue. Advance in influence of hydrophilic particle on surface tension of nanofluid. New Chemical Materials, 2018, 46(5): 38-43 (in Chinese)
    [3]
    郭子漪, 李凯, 康琦等. 界面张力梯度驱动对流向湍流转捩的研究. 力学进展, 2021, 51(1): 1-28 (Guo Ziyi, Li Kai, Kang Qi, et al. Study on bifurcation to chaos of surface tension gradient driven flow. Advances in Mechanics, 2021, 51(1): 1-28 (in Chinese) doi: 10.6052/1000-0992-20-022

    Guo Ziyi, Li Kai, Kang Qi, et al. Study on bifurcation to chaos of surface tension gradient driven flow. Advances in Mechanics, 2021, 51(1): 1-28 (in Chinese) doi: 10.6052/1000-0992-20-022
    [4]
    Narayanan R, Schwabe D. Interfacial Fluid Dynamics and Transport Processes. Springer Science & Business Media, 2003
    [5]
    Carnie SL, Del CL, Horn RG. Mobile surface charge can immobilize the air/water interface. Langmuir, 2019, 35(48): 16043-16052 doi: 10.1021/acs.langmuir.9b01691
    [6]
    Kalpathy SK. Electrocapillary effect in liquid films with an electrically charged interface. Materials Today: Proceedings, 2021, 44: 3006-3011 doi: 10.1016/j.matpr.2021.02.406
    [7]
    Hoult DP. Oil spreading on the sea. Annual Review of Fluid Mechanics, 1972, 4(1): 341-368 doi: 10.1146/annurev.fl.04.010172.002013
    [8]
    Bergeron V, Langevin D. Monolayer spreading of polydimethylsiloxane oil on surfactant solutions. Physical Review Letters, 1996, 76(17): 3152 doi: 10.1103/PhysRevLett.76.3152
    [9]
    Zhao WJ, Ma HZ, Ji WJ, et al. Marangoni-driven instability patterns of an N-hexadecane drop triggered by assistant solvent. Physics of Fluids, 2021, 33(2): 024104
    [10]
    Soleimani R, Azaiez J, Zargartalebi M, et al. Analysis of Marangoni effects on the non-isothermal immiscible Rayleigh-Taylor instability. International Journal of Multiphase Flow, 2022, 156: 104231 doi: 10.1016/j.ijmultiphaseflow.2022.104231
    [11]
    Dash S, Garimella SV. Droplet evaporation on heated hydrophobic and superhydrophobic surfaces. Physical Review E, 2014, 89(4): 042402 doi: 10.1103/PhysRevE.89.042402
    [12]
    Diddens C, Tan HS, Lyu PY, et al. Evaporating pure, binary and ternary droplets: Thermal effects and axial symmetry breaking. Journal of Fluid Mechanics, 2017, 823: 470-497 doi: 10.1017/jfm.2017.312
    [13]
    Jeong CH, Lee HJ, Kim DY, et al. Quantitative analysis of contact line behaviors of evaporating binary mixture droplets using surface plasmon resonance imaging. International Journal of Heat and Mass Transfer, 2021, 165: 120690 doi: 10.1016/j.ijheatmasstransfer.2020.120690
    [14]
    Hu H, Larson RG. Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir, 2005, 21(9): 3963-3971 doi: 10.1021/la047528s
    [15]
    Hu Hua, Larson Ronald G. Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094 doi: 10.1021/jp0609232
    [16]
    Hu H, Larson RG. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 2005, 21(9): 3972-3980 doi: 10.1021/la0475270
    [17]
    Ristenpart WD, Kim PG, Domingues C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops. Physical Review Letters, 2007, 99(23): 234502 doi: 10.1103/PhysRevLett.99.234502
    [18]
    Foudhil W, Aricò C, Perré P, et al. Use of heating configuration to control Marangoni circulation during droplet evaporation. Water, 2022, 14(10): 1653 doi: 10.3390/w14101653
    [19]
    Shiri S, Sinha S, Baumgartner DA, et al. Thermal Marangoni flow impacts the shape of single component volatile droplets on thin, completely wetting substrates. Physical Review Letters, 2021, 127(2): 024502 doi: 10.1103/PhysRevLett.127.024502
    [20]
    Xu XF, Luo JB, Guo D. Criterion for reversal of thermal Marangoni flow in drying drops. Langmuir, 2010, 26(3): 1918-1922 doi: 10.1021/la902666r
    [21]
    Tsoumpas Y, Dehaeck S, Rednikov A, et al. Effect of Marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir, 2015, 31(49): 13334-13340 doi: 10.1021/acs.langmuir.5b02673
    [22]
    Nikolov AD, Wasan DT, Wu PK. Marangoni flow alters wetting: Coffee ring and superspreading. Current Opinion in Colloid & Interface Science, 2021, 51: 101387
    [23]
    史杰. 马兰戈尼流动下颗粒悬浮液的液滴蒸发沉积形态研究. [硕士论文]. 昆明: 昆明理工大学, 2021 (Shijie. Study on droplet evaporative deposition morphology of particulate suspensions under Marangoni flow. [Master Thesis]. Kunming: Kunming University of Science and Technology, 2021 (in Chinese)

    Shijie. Study on droplet evaporative deposition morphology of particulate suspensions under Marangoni flow. [Master Thesis]. Kunming: Kunming University of Science and Technology, 2021 (in Chinese)
    [24]
    Vakarelski IU, Chan DYC, Nonoguchi T, et al. Assembly of gold nanoparticles into microwire networks induced by drying liquid bridges. Physical Review Letters, 2009, 102(5): 058303 doi: 10.1103/PhysRevLett.102.058303
    [25]
    He P, Derby B. Controlling coffee ring formation during drying of inkjet printed 2D inks. Advanced Materials Interfaces, 2017, 4(22): 1700944 doi: 10.1002/admi.201700944
    [26]
    Dugas V, Broutin J, Souteyrand E. Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 2005, 21(20): 9130-9136 doi: 10.1021/la050764y
    [27]
    Kim H, Boulogne F, Um E, et al. Controlled uniform coating from the interplay of Marangoni flows and surface-adsorbed macromolecules. Physical Review Letters, 2016, 116(12): 124501 doi: 10.1103/PhysRevLett.116.124501
    [28]
    Wilson SK, D'ambrosio HM. Evaporation of sessile droplets. Annual Review of Fluid Mechanics, 2023, 55: 481-509 doi: 10.1146/annurev-fluid-031822-013213
    [29]
    袁泉子, 沈文豪, 赵亚溥. 移动接触线的物理力学研究. 力学进展, 2016, 46(1): 201608 (Yuan Quanzi, Shen Wenhao, Zhao Yapu. Physical mechanics investigations of moving contact lines. Advances in Mechanics, 2016, 46(1): 201608 (in Chinese) doi: 10.6052/1000-0992-16-006

    Yuan Quanzi, Shen Wenhao, Zhao Yapu. Physical mechanics investigations of moving contact lines. Advances in Mechanics, 2016, 46(1): 201608 (in Chinese) doi: 10.6052/1000-0992-16-006
    [30]
    Gao P, Li L, Feng JJ, et al. Film deposition and transition on a partially wetting plate in dip coating. Journal of Fluid Mechanics, 2016, 791: 358-383 doi: 10.1017/jfm.2016.64
    [31]
    Pahlavan AA, Yang LS, Bain CD, et al. Evaporation of binary-mixture liquid droplets: the formation of picoliter pancakelike shapes. Physical Review Letters, 2021, 127(2): 024501 doi: 10.1103/PhysRevLett.127.024501
    [32]
    Baumgartner DA, Shiri S, Sinha S, et al. Marangoni spreading and contracting three-component droplets on completely wetting surfaces. Proceedings of the National Academy of Sciences, 2022, 119(19): e2120432119 doi: 10.1073/pnas.2120432119
    [33]
    Tanner LH. The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics, 1979, 12(9): 1473 doi: 10.1088/0022-3727/12/9/009
    [34]
    Wang ZY, Orejon D, Takata Y, et al. Wetting and evaporation of multicomponent droplets. Physics Reports, 2022, 960: 1-37 doi: 10.1016/j.physrep.2022.02.005
    [35]
    Askounis A, Kita Y, Kohno M, et al. Influence of local heating on Marangoni flows and evaporation kinetics of pure water drops. Langmuir, 2017, 33(23): 5666-5674 doi: 10.1021/acs.langmuir.7b00957
    [36]
    Block MJ. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature, 1956, 178(4534): 650-651 doi: 10.1038/178650a0
    [37]
    Kita Y, Askounis A, Kohno M, et al. Induction of Marangoni convection in pure water drops. Applied Physics Letters, 2016, 109(17): 171602 doi: 10.1063/1.4966542
    [38]
    段俐. 微重力流体物理专题序. 力学学报, 2022, 54(2): 289-290 (Duan Li. Preface of theme articles on microgravity fluid physic. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 289-290 (in Chinese) doi: 10.6052/0459-1879-22-070

    Duan Li. Preface of theme articles on microgravity fluid physic. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 289-290 (in Chinese) doi: 10.6052/0459-1879-22-070
    [39]
    Chen E, Xu F. Transient Marangoni convection induced by an isothermal sidewall of a rectangular liquid pool. Journal of Fluid Mechanics, 2021, 928: A6 doi: 10.1017/jfm.2021.795
    [40]
    Chen E, Xu F. Transient thermocapillary convection flows in a rectangular cavity with an evenly heated lateral wall. Physics of Fluids, 2021, 33(1): 013602
    [41]
    Chen E, Xu F. Thermocapillary convective flow induced by a ramp heating wall. International Journal of Heat and Mass Transfer, 2023, 217: 124689 doi: 10.1016/j.ijheatmasstransfer.2023.124689
    [42]
    Tao YQ, Liu QS, Qin J, et al. Thermocapillary convection of evaporating thin nanofluid layer in a rectangular cavity. Microgravity Science and Technology, 2023, 35(5): 51 doi: 10.1007/s12217-023-10076-7
    [43]
    Craster RV, Matar OK. Dynamics and stability of thin liquid films. Reviews of Modern Physics, 2009, 81(3): 1131 doi: 10.1103/RevModPhys.81.1131
    [44]
    Matar OK, Craster RV. Dynamics of surfactant-assisted spreading. Soft Matter, 2009, 5(20): 3801-3809 doi: 10.1039/b908719m
    [45]
    Motaghian M, Van Der Linden E, Habibi M. Surfactant-surfactant interactions govern unusual Marangoni spreading on a soap film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129747 doi: 10.1016/j.colsurfa.2022.129747
    [46]
    Stetten AZ, Iasella SV, Corcoran TE, et al. Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Current Opinion in Colloid & Interface Science, 2018, 36: 58-69
    [47]
    Boniewicz-Szmyt K, Pogorzelski SJ. Crude oil derivatives on sea water: Signatures of spreading dynamics. Journal of Marine Systems, 2008, 74: S41-S51 doi: 10.1016/j.jmarsys.2007.11.015
    [48]
    Kim H, Muller K, Shardt O, et al. Solutal Marangoni flows of miscible liquids drive transport without surface contamination. Nature Physics, 2017, 13(11): 1105-1110 doi: 10.1038/nphys4214
    [49]
    Stetten AZ, Moraca G, Corcoran TE, et al. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. Journal of Colloid and Interface Science, 2016, 484: 270-278 doi: 10.1016/j.jcis.2016.08.076
    [50]
    Karapetsas G, Craster RV, Matar OK. On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces. Journal of Fluid Mechanics, 2011, 670: 5-37 doi: 10.1017/S0022112010005495
    [51]
    Theodorakis PE, Müller EA, Craster RV, et al. Modelling the superspreading of surfactant-laden droplets with computer simulation. Soft Matter, 2015, 11(48): 9254-9261 doi: 10.1039/C5SM02090E
    [52]
    Borgas MS, Grotberg JB. Monolayer flow on a thin film. Journal of Fluid Mechanics, 1988, 193: 151-170 doi: 10.1017/S0022112088002095
    [53]
    Gaver DP, Grotberg JB. Droplet spreading on a thin viscous film. Journal of Fluid Mechanics, 1992, 235: 399-414 doi: 10.1017/S0022112092001162
    [54]
    Liu JY, Guo XY, Xu Y, et al. Spreading of oil droplets containing surfactants and pesticides on water surface based on the Marangoni effect. Molecules, 2021, 26(5): 1408 doi: 10.3390/molecules26051408
    [55]
    Wang X, Bonaccurso E, Venzmer J, et al. Deposition of drops containing surfactants on liquid pools: Movement of the contact line, Marangoni ridge, capillary waves and interfacial particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486: 53-59
    [56]
    Jensen OE, Grotberg JB. Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. Journal of Fluid Mechanics, 1992, 240: 259-288 doi: 10.1017/S0022112092000090
    [57]
    Jensen OE. The spreading of insoluble surfactant at the free surface of a deep fluid layer. Journal of Fluid Mechanics, 1995, 293: 349-378 doi: 10.1017/S0022112095001741
    [58]
    Dussaud AD, Matar OK, Troian SM. Spreading characteristics of an insoluble surfactant film on a thin liquid layer: Comparison between theory and experiment. Journal of Fluid Mechanics, 2005, 544: 23-51 doi: 10.1017/S002211200500621X
    [59]
    Dussaud AD, Troian SM. Dynamics of spontaneous spreading with evaporation on a deep fluid layer. Physics of Fluids, 1998, 10(1): 23-38 doi: 10.1063/1.869546
    [60]
    Jia FF, Wang TY, Peng XY, et al. Three stages of Marangoni-driven film spreading for miscible fluids. Physics of Fluids, 2022, 34(12): 121705
    [61]
    Fallest DW, Lichtenberger AM, Fox CJ, et al. Fluorescent visualization of a spreading surfactant. New Journal of Physics, 2010, 12(7): 073029 doi: 10.1088/1367-2630/12/7/073029
    [62]
    Sauleda ML, Chu HCW, Tilton RD, et al. Surfactant driven Marangoni spreading in the presence of predeposited insoluble surfactant monolayers. Langmuir, 2021, 37(11): 3309-3320 doi: 10.1021/acs.langmuir.0c03348
    [63]
    Xue N, Pack MY, Stone HA. Marangoni-driven film climbing on a draining pre-wetted film. Journal of Fluid Mechanics, 2020, 886: A24 doi: 10.1017/jfm.2019.1071
    [64]
    Jensen OE. Self‐similar, surfactant‐driven flows. Physics of Fluids, 1994, 6(3): 1084-1094 doi: 10.1063/1.868280
    [65]
    Gaver DP, Grotberg JB. The dynamics of a localized surfactant on a thin film. Journal of Fluid Mechanics, 1990, 213: 127-148 doi: 10.1017/S0022112090002257
    [66]
    Bickel T, Detcheverry F. Exact solutions for viscous Marangoni spreading. Physical Review E, 2022, 106(4): 045107
    [67]
    Bickel T. Spreading dynamics of reactive surfactants driven by Marangoni convection. Soft Matter, 2019, 15(18): 3644-3648 doi: 10.1039/C8SM02641F
    [68]
    Afsar-Siddiqui AB, Luckham PF, Matar OK. Unstable spreading of aqueous anionic surfactant solutions on liquid films. Part 1. Sparingly soluble surfactant. Langmuir, 2003, 19(3): 696-702
    [69]
    Afsar-Siddiqui AB, Luckham PF, Matar Omar K. Unstable spreading of aqueous anionic surfactant solutions on liquid films. 2. Highly soluble surfactant. Langmuir, 2003, 19(3): 703-708
    [70]
    Warner MRE, Craster RV, Matar OK. Fingering phenomena associated with insoluble surfactant spreading on thin liquid films. Journal of Fluid Mechanics, 2004, 510: 169-200 doi: 10.1017/S0022112004009437
    [71]
    Matar OK, Troian SM. Spreading of a surfactant monolayer on a thin liquid film: Onset and evolution of digitated structures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 1999, 9(1): 141-153 doi: 10.1063/1.166385
    [72]
    Berg S. Marangoni-driven spreading along liquid-liquid interfaces. Physics of Fluids, 2009, 21(3): 032105
    [73]
    Koldeweij RBJ, Van Capelleveen BF, Lohse D, et al. Marangoni-driven spreading of miscible liquids in the binary pendant drop geometry. Soft Matter, 2019, 15(42): 8525-8531 doi: 10.1039/C8SM02074D
    [74]
    Iasella SV, Sun NG, Zhang X, et al. Flow regime transitions and effects on solute transport in surfactant-driven Marangoni flows. Journal of Colloid and Interface Science, 2019, 553: 136-147 doi: 10.1016/j.jcis.2019.06.016
    [75]
    Sauleda ML, Hsieh TL, Xu WR, et al. Surfactant spreading on a deep subphase: Coupling of Marangoni flow and capillary waves. Journal of Colloid and Interface Science, 2022, 614: 511-521 doi: 10.1016/j.jcis.2022.01.142
    [76]
    Xiao Y, Ribe NM, Zhang YG, et al. Generation of Fermat’s spiral patterns by solutal Marangoni-driven coiling in an aqueous two-phase system. Nature Communications, 2022, 13(1): 1-11 doi: 10.1038/s41467-021-27699-2
    [77]
    Roché M, Li ZZ, Griffiths IM, et al. Marangoni flow of soluble amphiphiles. Physical Review Letters, 2014, 112(20): 208302 doi: 10.1103/PhysRevLett.112.208302
    [78]
    Krishnan M, Ugaz VM, Burns MA. PCR in a Rayleigh-Benard convection cell. Science, 2002, 298(5594): 793-793 doi: 10.1126/science.298.5594.793
    [79]
    Mysels KJ, Mukerjee P. Reporting experimental data dealing with critical micellization concentrations (CMCs) of aqueous surfactant systems. Pure Appl Chem, 1979, 51: 1083-1089 doi: 10.1351/pac197951051083
    [80]
    Kim HU, Lim KH. A model on the temperature dependence of critical micelle concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235(1-3): 121-128
    [81]
    Lichtenberg D, Robson RJ, Dennis EA. Solubilization of phospholipids by detergents structural and kinetic aspects. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1983, 737(2): 285-304
    [82]
    Stoebe T, Lin ZX, Hill RM, et al. Superspreading of aqueous films containing trisiloxane surfactant on mineral oil. Langmuir, 1997, 13(26): 7282-7286 doi: 10.1021/la970704v
    [83]
    Tang XL, Dong JF, Li XF. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves. Journal of Colloid and Interface Science, 2008, 325(1): 223-227 doi: 10.1016/j.jcis.2008.05.055
    [84]
    Lee KS, Starov VM. Spreading of surfactant solutions over thin aqueous layers: Influence of solubility and micelles disintegration. Journal of Colloid and Interface Science, 2007, 314(2): 631-642 doi: 10.1016/j.jcis.2007.06.009
    [85]
    Roché M, Li ZZ, Griffiths IM, et al. The spreading of hydrosoluble surfactants on water. Physics of Fluids, 2013, 25(9): 091108 doi: 10.1063/1.4820036
    [86]
    Bandi MM, Akella VS, Singh DK, et al. Hydrodynamic signatures of stationary Marangoni-driven surfactant transport. Physical Review Letters, 2017, 119(26): 264501 doi: 10.1103/PhysRevLett.119.264501
    [87]
    Le RS, Roché M, Cantat I, et al. Soluble surfactant spreading: How the amphiphilicity sets the Marangoni hydrodynamics. Physical Review E, 2016, 93(1): 013107 doi: 10.1103/PhysRevE.93.013107
    [88]
    Mandre S. Axisymmetric spreading of surfactant from a point source. Journal of Fluid Mechanics, 2017, 832: 777-792 doi: 10.1017/jfm.2017.708
    [89]
    Hernández-Sánchez JF, Eddi A, Snoeijer JH. Marangoni spreading due to a localized alcohol supply on a thin water film. Physics of Fluids, 2015, 27(3): 032003 doi: 10.1063/1.4915283
    [90]
    Kim H, Lee Ju, Kim TH, et al. Spontaneous Marangoni mixing of miscible liquids at a liquid–liquid–air contact line. Langmuir, 2015, 31(31): 8726-8731 doi: 10.1021/acs.langmuir.5b01897
    [91]
    Pant A, Puthenveettil BA, Kalpathy Sreeram K. Marangoni plumes in miscible spreading. Physics of Fluids, 2023, 35(3): 032107
    [92]
    Ma X, Zhong ML, He YF, et al. Fingering instability in Marangoni spreading on a deep layer of polymer solution. Physics of Fluids, 2020, 32(11): 112112
    [93]
    Ma X, Huang Y, Huang YR, et al. Experiments on Marangoni spreading–evidence of a new type of interfacial instability. Journal of Fluid Mechanics, 2023, 958: A33 doi: 10.1017/jfm.2023.108
    [94]
    Motaghian M, Van Esbroeck T, Van Der Linden E, et al. Interfacial instabilities in Marangoni-driven spreading of polymer solutions on soap films. Journal of Colloid and Interface Science, 2022, 612: 261-266 doi: 10.1016/j.jcis.2021.12.168
    [95]
    Graham MD. Interfacial hoop stress and instability of viscoelastic free surface flows. Physics of Fluids, 2003, 15(6): 1702-1710 doi: 10.1063/1.1568340
    [96]
    Deblais A, Harich R, Colin A, et al. Taming contact line instability for pattern formation. Nature Communications, 2016, 7(1): 12458 doi: 10.1038/ncomms12458
    [97]
    Wodlei F, Sebilleau J, Magnaudet J, et al. Marangoni-driven flower-like patterning of an evaporating drop spreading on a liquid substrate. Nature Communications, 2018, 9(1): 1-12 doi: 10.1038/s41467-017-02088-w
    [98]
    Keiser L, Bense H, Colinet P, et al. Marangoni bursting: evaporation-induced emulsification of binary mixtures on a liquid layer. Physical Review Letters, 2017, 118(7): 074504 doi: 10.1103/PhysRevLett.118.074504
    [99]
    Kim S, Kim J, Kim HY. Formation, growth, and saturation of dry holes in thick liquid films under vapor-mediated Marangoni effect. Physics of Fluids, 2019, 31(11): 112105 doi: 10.1063/1.5127284
    [100]
    Malinowski R, Volpe G, Parkin IP, et al. Dynamic control of particle deposition in evaporating droplets by an external point source of vapor. The Journal of Physical Chemistry Letters, 2018, 9(3): 659-664 doi: 10.1021/acs.jpclett.7b02831
    [101]
    Hasegawa K, Manzaki Y. Marangoni fireworks: Atomization dynamics of binary droplets on an oil pool. Physics of Fluids, 2021, 33(3): 034124 doi: 10.1063/5.0041346
    [102]
    Diddens C. Detailed finite element method modeling of evaporating multi-component droplets. Journal of Computational Physics, 2017, 340: 670-687 doi: 10.1016/j.jcp.2017.03.049
    [103]
    Diddens C, Kuerten JGM, Van Der Geld CWM, et al. Modeling the evaporation of sessile multi-component droplets. Journal of Colloid and Interface Science, 2017, 487: 426-436 doi: 10.1016/j.jcis.2016.10.030
    [104]
    Karpitschka S, Liebig F, Riegler H. Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir, 2017, 33(19): 4682-4687 doi: 10.1021/acs.langmuir.7b00740
    [105]
    Jing JP, Reed J, Huang J, et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proceedings of the National Academy of Sciences, 1998, 95(14): 8046-8051 doi: 10.1073/pnas.95.14.8046
    [106]
    Grunze M. Driven liquids. Science, 1999, 283(5398): 41-42 doi: 10.1126/science.283.5398.41
    [107]
    Singh M, Haverinen HM, Dhagat P, et al. Inkjet printing—process and its applications. Advanced Materials, 2010, 22(6): 673-685 doi: 10.1002/adma.200901141
    [108]
    Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382 doi: 10.1146/annurev-fluid-022321-114001
    [109]
    Matar OK, Craster RV. Models for Marangoni drying. Physics of Fluids, 2001, 13(7): 1869-1883 doi: 10.1063/1.1378034
    [110]
    Stone HA, Stroock Abraham D, Ajdari Armand. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech, 2004, 36: 381-411 doi: 10.1146/annurev.fluid.36.050802.122124
    [111]
    Halpern D, Jensen OE, Grotberg JB. A theoretical study of surfactant and liquid delivery into the lung. Journal of Applied Physiology, 1998, 85(1): 333-352
    [112]
    Li HY, Li ZX, Tan XK, et al. Three-dimensional backflow at liquid–gas interface induced by surfactant. Journal of Fluid Mechanics, 2020, 899: A8 doi: 10.1017/jfm.2020.426
    [113]
    Chen CJ, Kuang YD, Hu LB. Challenges and opportunities for solar evaporation. Joule, 2019, 3(3): 683-718 doi: 10.1016/j.joule.2018.12.023
    [114]
    Shao Y, Shen AQ, Li NB, et al. Marangoni effect drives salt crystallization away from the distillation zone for large-scale continuous solar passive desalination. ACS Applied Materials & Interfaces, 2022, 14(26): 30324-30331
    [115]
    Tian Y, Wei XS, Wang ZJ, et al. A facile approach to prepare tough and responsive ultrathin physical hydrogel films as artificial muscles. ACS Applied Materials & Interfaces, 2017, 9(39): 34349-34355
    [116]
    Hayakawa M, Onoe H, Nagai KH, et al. Complex-shaped three-dimensional multi-compartmental microparticles generated by diffusional and Marangoni microflows in centrifugally discharged droplets. Scientific Reports, 2016, 6(1): 1-9 doi: 10.1038/s41598-016-0001-8
    [117]
    Sugawa K, Hayakawa Y, Aida Y, et al. Two-dimensional assembled PVP-modified silver nanoprisms guided by butanol for surface-enhanced Raman scattering-based invisible printing platforms. Nanoscale, 2022, 14(26): 9278-9285 doi: 10.1039/D2NR01725C
    [118]
    Tian Y, Gao XY, Hong W, et al. Kinetic insights into Marangoni effect-assisted preparation of ultrathin hydrogel films. Langmuir, 2018, 34(41): 12310-12317 doi: 10.1021/acs.langmuir.8b02626
    [119]
    Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chemical Reviews, 2015, 115(16): 8704-8735 doi: 10.1021/acs.chemrev.5b00047
    [120]
    Sánchez S, Soler L, Katuri J. Chemically powered micro‐and nanomotors. Angewandte Chemie International Edition, 2015, 54(5): 1414-1444 doi: 10.1002/anie.201406096
    [121]
    Walther A, Muller AH. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194-5261 doi: 10.1021/cr300089t
    [122]
    Gao W, Wang J. The environmental impact of micro/nanomachines: a review. ACS Nano, 2014, 8(4): 3170-3180 doi: 10.1021/nn500077a
    [123]
    Vogel S. Life's Devices: The Physical World of Animals and Plants. Princeton University Press, 1988
    [124]
    Nachtigall W. Locomotion: Mechanics and Hydrodynamics of Swimming in Aquatic Insects. Elsevier, 1974: 381-432
    [125]
    Scriven LE, Sternling CV. The Marangoni effects. Nature, 1960, 187(4733): 186-188 doi: 10.1038/187186a0
    [126]
    Kwak B, Bae J. Locomotion of arthropods in aquatic environment and their applications in robotics. Bioinspiration & Biomimetics, 2018, 13(4): 041002
    [127]
    Kwak B, Choi S, Maeng J, et al. Marangoni effect inspired robotic self-propulsion over a water surface using a flow-imbibition-powered microfluidic pump. Scientific Reports, 2021, 11(1): 1-13 doi: 10.1038/s41598-020-79139-8

Catalog

    Article Metrics

    Article views (403) PDF downloads (147) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return