Citation: | Li Guohui, Wu Xiaoyu, Wang Xian. Numerical simulation of Oldroyd-B viscoelastic droplets impacting a curved wall. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1342-1355. DOI: 10.6052/0459-1879-23-508 |
[1] |
孟旭, 王增辉, 蔡志洋等. 强磁场影响下镓液滴撞击固壁的实验研究. 力学学报, 2022, 54(2): 396-404 (Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513
Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513
|
[2] |
朱劭恺, 胡定华, 李强. 振动对液滴撞击壁面铺展特性的影响. 航空学报, 2023, 44(16): 58-69 (Zhu Shaokai, Hu Dinghua, Li Qiang. Effects of vibration on spreading characteristics of droplet impacting on surface. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 58-69 (in Chinese)
Zhu Shaokai, Hu Dinghua, Li Qiang. Effects of vibration on spreading characteristics of droplet impacting on surface. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 58-69 (in Chinese)
|
[3] |
杨九林. 微液滴限制电化学沉积稳定性控制方法研究. [硕士论文]. 绵阳: 西南科技大学, 2022 (Yang Jiulin. Study on stability control method of meniscus confined electrodeposition. [Master Thesis]. Mianyang: Southwest University of Science and Technology, 2022 (in Chinese)
Yang Jiulin. Study on stability control method of meniscus confined electrodeposition. [Master Thesis]. Mianyang: Southwest University of Science and Technology, 2022 (in Chinese)
|
[4] |
Biance AL, Clanet C, Quéré D. First steps in the spreading of a liquid droplet. Physical Review E, 2004, 69: 016301 doi: 10.1103/PhysRevE.69.016301
|
[5] |
Clanet C, Béguin C, Richard D, et al. Maximal deformation of an impacting drop. Journal of Fluid Mechanics, 2004, 517: 199-208 doi: 10.1017/S0022112004000904
|
[6] |
Bartolo D, Josserand C, Bonn D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. Journal of Fluid Mechanics, 2005, 545: 329-338 doi: 10.1017/S0022112005007184
|
[7] |
Qian J, Law CK. Regimes of coalescence and separation in droplet collision. Journal of Fluid Mechanics, 1997, 331: 59-80 doi: 10.1017/S0022112096003722
|
[8] |
Rein M. Phenomena of liquid drop impact on solid and liquid surface, fluid. Fluid Dynamics Research, 1993, 12(2): 61-93 doi: 10.1016/0169-5983(93)90106-K
|
[9] |
Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces. Experiments in Fluids, 2002, 33(1): 112-124 doi: 10.1007/s00348-002-0431-x
|
[10] |
Li B, Mehrizi AA, Lin SJ, et al. Dynamic behaviors of impinging viscoelastic droplets on superhydrophobic surfaces heated above the boiling temperature. International Journal of Heat and Mass Transfer, 2022, 183: 122080
|
[11] |
Son YS, Kim CY. Spreading of inkjet droplet of non-Newtonian fluid on solid surface with controlled contact angle at low Weber and Reynolds numbers. Journal of Non-Newtonian Fluid Mechanics, 2009, 162: 78-87 doi: 10.1016/j.jnnfm.2009.05.009
|
[12] |
Karim AM. Experimental dynamics of Newtonian non-elastic and viscoelastic droplets impacting immiscible liquid surface. AIP Advances, 2019, 9(12): 125141 doi: 10.1063/1.5134489
|
[13] |
Pack MY, Yang A, Perazzo A, et al. Role of extensional rheology on droplet bouncing. Physical Review Fluids, 2019, 4: 123603 doi: 10.1103/PhysRevFluids.4.123603
|
[14] |
Smith MI, Bertola V. Effect of polymer additives on the wetting of impacting droplets. Physical Review Letters, 2010, 104(15): 154502 doi: 10.1103/PhysRevLett.104.154502
|
[15] |
Serber R. Linear modifications in the Maxwell field equations. Physical Review, 1935, 48(1): 49-54 doi: 10.1103/PhysRev.48.49
|
[16] |
Guillope C, Saut JC. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Analysis-Theory Methods & Applications, 1990, 15(9): 849-869
|
[17] |
Warner HR, Bird RB. A molecular interpretation of steady state Maxwell orthogonal rheometer flow. Aiche Journal, 1970, 16(1): 150-162 doi: 10.1002/aic.690160132
|
[18] |
Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid Mechanics, 1982, 11(1-2): 69-109 doi: 10.1016/0377-0257(82)85016-7
|
[19] |
Oishi CM, Martins FP, Tomé M F, et al. Numerical simulation of drop impact and jet buckling problems using the eXtended Pom-Pom model. Journal of Non-Newtonian Fluid Mechanics, 2012, 169-170: 91-103 doi: 10.1016/j.jnnfm.2011.12.001
|
[20] |
Paulo GS, Oishi CM, Tomé MF, et al. Numerical solution of the FENE-CR model in complex flows. Journal of Non-Newtonian Fluid Mechanics, 2014, 204: 50-61 doi: 10.1016/j.jnnfm.2013.11.003
|
[21] |
关新燕, 富庆飞, 刘虎等. Oldroyd-B黏弹性液滴碰撞过程的数值模拟. 力学学报, 2022, 54(3): 644-652 (Guan Xinyan, Fu Qingfei, Liu Hu, et al. Numerical simulation of Oldroyd-B viscoelastic droplet collision. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652 (in Chinese) doi: 10.6052/0459-1879-22-020
Guan Xinyan, Fu Qingfei, Liu Hu, et al. Numerical simulation of Oldroyd-B viscoelastic droplet collision. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652 (in Chinese) doi: 10.6052/0459-1879-22-020
|
[22] |
Wang YL, Minh DQ, Amberg G. Impact of viscoelastic droplets. Journal of Non-Newtonian Fluid Mechanics, 2017, 243: 38-46 doi: 10.1016/j.jnnfm.2017.03.003
|
[23] |
Liu YY, Shu C, Zhang HW, et al. A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. Journal of Computational Physics, 2020, 401: 109019 doi: 10.1016/j.jcp.2019.109019
|
[24] |
Liu YY, Yang LM, Shu C, et al. An implicit high-order radial basis function-based differential quadrature-finite volume method on unstructured grids to simulate incompressible flows with heat transfer. Journal of Computational Physics, 2022, 467: 111461 doi: 10.1016/j.jcp.2022.111461
|
[25] |
Gac JM, Gradoń L. Lattice-Boltzmann modeling of collisions between droplets and particles. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2014, 441: 831-836
|
[26] |
Quan SL, Li WZ, Shen SQ, et al. Simulation of droplet impact onto horizontal and inclined solid surfaces with lattice-Boltzmann method. Journal of Harbin Institute of Technology, 2013, 20(6): 97-105
|
[27] |
Raman KA, Jaiman RK, Lee TS, et al. Lattice Boltzmann simulations of droplet impact onto surfaces with varying wettabilities. International Journal of Heat and Mass Transfer, 2016, 95: 336-354 doi: 10.1016/j.ijheatmasstransfer.2015.11.088
|
[28] |
Raman AK, Jaiman KR, Lee T, et al. Lattice Boltzmann study on the dynamics of successive droplets impact on a solid surface. Chemical Engineering Science, 2016, 145: 181-195 doi: 10.1016/j.ces.2016.02.017
|
[29] |
Malaspinas O, Fiétier N, Deville M. Lattice Boltzmann method for the simulation of viscoelastic fluid flows. Journal of Non-Newtonian Fluid Mechanics, 2010, 165: 1637-1653 doi: 10.1016/j.jnnfm.2010.09.001
|
[30] |
Wang Di, Tan D, Phan-Thien N. A lattice Boltzmann method for simulating viscoelastic drops. Physics of Fluids, 2019, 31(7): 073101 doi: 10.1063/1.5100327
|
[31] |
Ehsan KF, Mohsen G, Ehsan F. A pressure approach of cumulant phase-field lattice Boltzmann method for simulating multiphase flows. Physics of Fluids, 2023, 35(2): 1-17
|
[32] |
Ren F, Song BW, Sukop MC, et al. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation. Physical Review E, 2016, 94: 023311 doi: 10.1103/PhysRevE.94.023311
|
[33] |
Wang HL, Chai ZH, Shi BC, et al. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Physical Review E, 2016, 94: 033304 doi: 10.1103/PhysRevE.94.033304
|
[34] |
Martin G, Abbas F, Taehun L. Conservative phase-field lattice Boltzmann model for interface tracking equation. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(6): 063309 doi: 10.1103/PhysRevE.91.063309
|
[35] |
Mohammad HR, Abbas F. Phase-field modeling by the method of lattice Boltzmann equations. Physical Review, E. Statistical, Nonlinear, and Soft Matter Physics, 2010, 81: 036707
|
[36] |
Fakhari A, Lee T. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers. Physical Review E, 2013, 87(2): 023304
|
[37] |
Wang D, Wang NN, Liu HH. Droplet deformation and breakup in shear-thinning viscoelastic fluid under simple shear flow. Journal of Rheology, 2022, 66(3): 585 doi: 10.1122/8.0000382
|
[38] |
Fakhari A, Bolster D. Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios. Journal of Computational Physics, 2017, 334: 620-638 doi: 10.1016/j.jcp.2017.01.025
|
[39] |
Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 2001, 13(11): 3452-3459 doi: 10.1063/1.1399290
|
[40] |
Zhang D, Papadikis K, Gu S. Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces. International Journal of Thermal Sciences, 2014, 84: 75-85 doi: 10.1016/j.ijthermalsci.2014.05.002
|
[1] | Lyu Ming, Chen Yuxin, Ning Zhi, Zhao Jinsheng. EXPERIMENTAL STUDY ON EVAPORATION AND MICRO-EXPLOSION CHARACTERISTICS OF OXYGEN-CONTAINING DROPLETS ON HIGH-TEMPERATURE WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 424-435. DOI: 10.6052/0459-1879-24-498 |
[2] | Chen Miaomiao, Wang Zhaochang, Zheng Nan, Zhang Guotao, Tu Deyu, Tong Baohong. EXPERIMENTAL STUDY OF MICRO LUBRICATING OIL DROPLETS IMPACTING ADHERENT PARTICLES ON INCLINED WALL SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2854-2864. DOI: 10.6052/0459-1879-24-242 |
[3] | Ni Baoyu, Xiong Hang, Zeng Lingdong, Sun Linhua. RESEARCH ON THE CHARACTERISTICS OF FLEXURAL GRAVITY WAVES PROPAGATING IN A SOLID ICE CHANNEL INDUCED BY A MOVING PRESSURE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2838-2853. DOI: 10.6052/0459-1879-24-216 |
[4] | Zhou Xin, Sheng Jianlong, Ye Zuyang. STUDY ON TWO-PHASE DISPLACEMENT FLOW BEHAVIOR THROUGH ROUGH-WALLED FRACTURES USING LBM SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1475-1487. DOI: 10.6052/0459-1879-23-509 |
[5] | Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. VIBRATIONAL CHARACTERISTICS OF HONEYCOMB SANDWICH CANTILEVER PLATE WITH CURVED-WALL CORE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180. DOI: 10.6052/0459-1879-22-305 |
[6] | Gao Quan, Qiu Xiang, Xia Yuxian, Li Jiahua, Liu Yulu. STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1257-1267. DOI: 10.6052/0459-1879-20-432 |
[7] | Song Yunchao, Ning Zhi, Sun Chunhua, Lü Ming, Yan Kai, Fu Juan. MOVEMENT AND SPLASHING OF A DROPLET IMPACTING ON A WET WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 833-842. DOI: 10.6052/0459-1879-13-053 |
[8] | Three dimensional numerical simulation of natural curved river[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 689-696. DOI: 10.6052/0459-1879-2005-6-2004-223 |
[9] | MECHANISM OF DRAG REDUCTION BY SPANWISE WALL OSCILLATION IN TURBULENT CHANNEL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2002-368 |
[10] | A CURVED STIFFENER BEAM ELEMENT FOR LARGE DEFLECTION ANALYSIS OF COMPOSITE SHELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(4): 511-516. DOI: 10.6052/0459-1879-1992-4-1995-769 |