EI、Scopus 收录
中文核心期刊
Hou Likai, Fan Xu, Jin Yuzhuo, Liu Mingyang, Bao Fubing. Research progress of liquid micro-flow measurement techniques. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1573-1584. DOI: 10.6052/0459-1879-23-500
Citation: Hou Likai, Fan Xu, Jin Yuzhuo, Liu Mingyang, Bao Fubing. Research progress of liquid micro-flow measurement techniques. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1573-1584. DOI: 10.6052/0459-1879-23-500

RESEARCH PROGRESS OF LIQUID MICRO-FLOW MEASUREMENT TECHNIQUES

  • Received Date: October 18, 2023
  • Accepted Date: February 01, 2024
  • Available Online: February 01, 2024
  • Published Date: February 02, 2024
  • With the interdisciplinary research of fluid mechanics and multi-disciplinary fields such as life science, materials science, medical and health, energy technology, environmental sciences, advanced manufacturing, etc., liquid micro flow and microfluidic technology have gradually been widely applied in the above fields. At the same time, the need to measure liquid micro flow (microliters or nanoliters per minute, or even smaller) is becoming more and more prominent. With the shrink of characteristic scale under the microscale application, the original liquid flow measurement technology has been unable to meet the requirements of measurement accuracy of liquid micro flow. Therefore, the further development of flow measurement technology is needed to meet the needs of micro flow measurement and microscale integration of sensors. This paper mainly introduces the existing and developing liquid micro flow measurement technologies and discusses its application background and existing problems. Firstly, depending on whether external energy (such as electric energy, heat energy, etc.) is introduced in the measurement process, the existing and developing liquid micro flow measurement technologies are divided into active flow measurement technology and passive flow measurement technology. Then, their specific measurement technologies are discussed respectively, including mass flow measurement technology (Coriolis flow measurement, micro resonator), thermal flow measurement technology (heat loss flow measurement, calorimetric flow measurement, time of flight flow measurement), optofluidics technology (photobleaching flow measurement), pressure conversion flow measurement technology (pressure difference flow measurement, cantilever flow measurement, flexible film deformation flow measurement), particle image velocimetry technology, gravity measurement technology, meniscus tracking technology, etc.. The sensor measurement principle, measurement performance index, advantages and disadvantages of the above-mentioned liquid micro flow measurement technologies are discussed. Finally, combined with the development of liquid micro flow measurement technology and the construction of national advanced measurement system, the application prospect and challenges to be solved in micro flow measurement of liquid are summarized.
  • [1]
    市场监管总局、科技部、工业和信息化部、国资委、知识产权局. 关于加强国家现代先进测量体系建设的指导意见. 中国. 2022: 国市监计量发〔2021〕2086号 (State Administration for Market Regulation, Ministry of Science and Technology, Ministry of Industry and Information Technology, State-owned Assets Supervision and Administration Commission, Intellectual Property Office. Guiding Opinions on Strengthening the Construction of National Modern Advanced Measurement System. China. 2022: State Market Supervision and Metrology (2021) No. 2086 (in Chinese)

    State Administration for Market Regulation, Ministry of Science and Technology, Ministry of Industry and Information Technology, State-owned Assets Supervision and Administration Commission, Intellectual Property Office. Guiding Opinions on Strengthening the Construction of National Modern Advanced Measurement System. China. 2022: State Market Supervision and Metrology (2021) No. 2086 (in Chinese)
    [2]
    国务院. 计量发展规划(2021-2035年). 中国. 2022: 国发〔2021〕37号 (The State Council. China. Metrological Development Plan (2021-2035). 2022: State (2021) No. 37 (in Chinese)

    The State Council. China. Metrological Development Plan (2021-2035). 2022: State (2021) No. 37 (in Chinese)
    [3]
    吴健康. 复杂微流体系统流动-电场-热传导耦合作用的若干基础问题和应用//庆祝中国力学学会成立50周年暨中国力学学会学术大会(CCTAM2007). 北京, 2007: 539-540 (Wu Jiankang. Some basic problems and applications of flow-electric field-heat transfer coupling in complex microfluidic systems//Celebrating the 50th Anniversary of the Chinese Mechanics Society and the Academic Conference of the Chinese Mechanics Society (CCTAM2007). Beijing, 2007: 539-540 (in Chinese)

    Wu Jiankang. Some basic problems and applications of flow-electric field-heat transfer coupling in complex microfluidic systems//Celebrating the 50th Anniversary of the Chinese Mechanics Society and the Academic Conference of the Chinese Mechanics Society (CCTAM2007). Beijing, 2007: 539-540 (in Chinese)
    [4]
    龚磊, 吴健康. 微通道液体流动双电层阻力效应. 应用数学与力学, 2006, 27(17): 1219-1225 (Gong Lei, Wu Jiankang. Double-layer resistance effect of microchannel liquid flow. Journal of Applied Mathematics and Mechanics, 2006, 27(17): 1219-1225 (in Chinese)

    Gong Lei, Wu Jiankang. Double-layer resistance effect of microchannel liquid flow. Journal of Applied Mathematics and Mechanics, 2006, 27(17): 1219-1225 (in Chinese)
    [5]
    Van De Pol FCM, Branebjerg J. Micro liquid-handling devices-a review//Micro System Technologies 90: 1st International Conference on Micro Electro, Opto, Mechanic Systems and Components. Berlin, 10-13 September 1990. Springer Berlin Heidelberg, 1990: 799-805
    [6]
    Nguyen N. Micromachined flow sensors-a review. Flow Meas Instrum, 1997, 8(1): 7-16
    [7]
    Kuo JT W, Yu L, Meng E. Micromachined thermal flow sensors-A review. Micromachines, 2012, 3(3): 550-573
    [8]
    Ejeian F, Azadi S, Razmjou A, et al. Design and applications of MEMS flow sensors: A review. Sensors and Actuators A: Physical, 2019, 295: 483-502 doi: 10.1016/j.sna.2019.06.020
    [9]
    李战华, 吴健康, 胡国庆等. 微流控芯片中的流体流动. 北京: 科学出版社, 2012 (Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese)

    Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese)
    [10]
    陈晓东, 胡国庆. 微流控器件中的多相流动. 力学进展, 2015, 45: 201503 (Chen Xiaodong, Hu Guoqing. Multiphase flow in microfluidic devices. Advances in Mechanics, 2015, 45: 201503 (in Chinese) doi: 10.6052/1000-0992-14-063

    Chen Xiaodong, Hu Guoqing. Multiphase flow in microfluidic devices. Advances in Mechanics, 2015, 45: 201503 (in Chinese) doi: 10.6052/1000-0992-14-063
    [11]
    龚茂淑. 容积式气体流量计的一般规定. 仪器仪表标准化与计量, 1994, 2: 39-43 (Gong Maoshu. General regulations of positive displacement gas flowmeter. Instrument Standardization and Metrology, 1994, 2: 39-43 (in Chinese)

    Gong Maoshu. General regulations of positive displacement gas flowmeter. Instrument Standardization and Metrology, 1994, 2: 39-43 (in Chinese)
    [12]
    李冬, 孙建亭, 杜广生等. 结构参数对超声波流量计水流特性影响的研究. 仪器仪表学报, 2016, 37(4): 945-951 (Li Dong, Sun Jianting, Du Guangsheng, et al. Research on the effects of structural parameters on the ultrasonic flowmeter flow. Chinese Journal of Scientific Instrument, 2016, 37(4): 945-951 (in Chinese) doi: 10.3969/j.issn.0254-3087.2016.04.029

    Li Dong, Sun Jianting, Du Guangsheng, et al. Research on the effects of structural parameters on the ultrasonic flowmeter flow. Chinese Journal of Scientific Instrument, 2016, 37(4): 945-951 (in Chinese) doi: 10.3969/j.issn.0254-3087.2016.04.029
    [13]
    罗凡, 甘蓉, 赵普俊等. 科里奥利质量流量计传感器零点模型研究及应用. 仪器仪表学报, 2021, 41(8): 15-23 (Luo Fan, Gan Rong, Zhao Pujun, et al. Research and application of coriolis mass flowmeter sensor zero model. Chinese Journal of Scientific Instrument, 2021, 41(8): 15-23 (in Chinese)

    Luo Fan, Gan Rong, Zhao Pujun, et al. Research and application of coriolis mass flowmeter sensor zero model. Chinese Journal of Scientific Instrument, 2021, 41(8): 15-23 (in Chinese)
    [14]
    杨辉跃, 涂亚庆, 毛育文. 科氏流量计相位差估计的ap-Hilbert法. 仪器仪表学报, 2019, 40(1): 35-42 (Yang Huiyue, Tu Yaqing, Mao Yuwen. Coriolis flowmeter method of phase difference estimation ap-the Hilbert. Chinese Journal of Scientific Instrument, 2019, 40(1): 35-42 (in Chinese)

    Yang Huiyue, Tu Yaqing, Mao Yuwen. Coriolis flowmeter method of phase difference estimation ap-the Hilbert. Chinese Journal of Scientific Instrument, 2019, 40(1): 35-42 (in Chinese)
    [15]
    Alvesteffer WJ, Baker WC, Cole R, et al. A brief history of the thermal mass flow meter and controller//SVC Summer Bulletin, 2010: 42-46
    [16]
    Van Putten AFP. An integrated silicon anemometer//IEE Colloquium on Solid State and Smart Sensors. IET, 1988: 4/1-4/6
    [17]
    Papadopoulos G, Hammad KJ. A PIV-based flow meter//Proceedings of the ASME Fluids Engineering Division Summer Meeting. The Society, 2000, 1: 229
    [18]
    Meinhart CD, Wereley ST, Santiago JG. PIV measurements of a microchannel flow. Experiments in Fluids, 1999, 27(5): 414-419 doi: 10.1007/s003480050366
    [19]
    Coriolis G, Coriolis GG. Théorie Mathématique des Effets du jeu de Billard. Carilian-Goeury, 1835
    [20]
    Groenesteijn J. Microfluidic platform for Coriolis-based sensor and actuator systems. [PhD Thesis]. Nederland: University of Twente, 2016
    [21]
    Enoksson P, Stemme G, Stemme E. A silicon resonant sensor structure for Coriolis mass-flow measurements. Journal of Microelectromechanical Systems, 1997, 6(2): 119-125 doi: 10.1109/84.585789
    [22]
    [23]
    Haneveld J, Lammerink TSJ, de Boer MJ, et al. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor. Journal of Micromechanics and Microengineering, 2010, 20(12): 125001 doi: 10.1088/0960-1317/20/12/125001
    [24]
    Schut TVP, Alveringh D, Sparreboom W, et al. Fully integrated mass flow, pressure, density and viscosity sensor for both liquids and gases//IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018: 218-221
    [25]
    Escobar JE, Molina J, Gil-Santos E, et al. Nanomechanical sensing for mass flow control in nanowire-based open nanofluidic systems. ACS Nano, 2023, 17(21): 21044-21055 doi: 10.1021/acsnano.3c04020
    [26]
    Thomas CC. The measurement of gases. Journal of the Franklin Institute, 1911, 172(5): 411-460
    [27]
    Van Putten AFP. An integrated silicon double bridge anemometer. Sensors and Actuators, 1983, 4: 387-396 doi: 10.1016/0250-6874(83)85049-5
    [28]
    King LV. XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philosophical Transactions of the Royal Society of London. series A, containing papers of a mathematical or physical character, 1914, 214(509-522): 373-432
    [29]
    Dijkstra M, Boer M, Berenschot JW, et al. Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels. Sensors and Actuators A Physical, 2008, 143(1): 1-6 doi: 10.1016/j.sna.2007.12.005
    [30]
    Zhang Q, Wang Y, Tao R, et al. Flexible ZnO thin film acoustic wave device for gas flow rate measurement. Journal of Micromechanics and Microengineering, 2020, 30(9): 095010 doi: 10.1088/1361-6439/ab9d2a
    [31]
    Yoon E, Wise KD. An integrated mass flow sensor with on-chip CMOS interface circuitry. IEEE Transactions on Electron Devices, 1992, 39(6): 1376-1386 doi: 10.1109/16.137317
    [32]
    [33]
    Nguyen NT, Huang XY, Toh KC. Thermal flow sensor for ultra-low velocities based on printed circuit board technology. Measurement Science and Technology, 2001, 12(12): 2131 doi: 10.1088/0957-0233/12/12/314
    [34]
    Shaun F, Sarkar S, Marty F, et al. Sensitivity optimization of micro-machined thermo-resistive flow-rate sensors on silicon substrates. Journal of Micromechanics and Microengineering, 2018, 28(7): 074002 doi: 10.1088/1361-6439/aab6bd
    [35]
    [36]
    Berthet H, Jundt J, Durivault J, et al. Time-of-flight thermal flowrate sensor for lab-on-chip applications, Lab on A Chip, 2011, 11(2): 215-223
    [37]
    Offenzeller C, Knoll M, Voglhuber-Brunnmaier T, et al. Fully screen printed thermocouple and microheater applied for time-of-flight sensing in microchannels. IEEE Sensors Journal, 2018, 18(21): 8685-8692 doi: 10.1109/JSEN.2018.2868161
    [38]
    Cooksey GA, Patrone PN, Hands JR, et al. Dynamic measurement of nanoflows: realization of an optofluidic flow meter to the nanoliter-per-minute scale. Analytical Chemistry, 2019, 91(16): 10713-10722 doi: 10.1021/acs.analchem.9b02056
    [39]
    Ahrens R, Schlote-Holubek K. A micro flow sensor from a polymer for gases and liquids. Journal of Micromechanics and Microengineering, 2009, 19(7): 074006 doi: 10.1088/0960-1317/19/7/074006
    [40]
    Wu S, Lin Q, Yuen Y, et al. MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A: Physical, 2001, 89(1-2): 152-158 doi: 10.1016/S0924-4247(00)00541-0
    [41]
    Noeth N, Keller SS, Boisen A. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors, 2013, 14(1): 229-244 doi: 10.3390/s140100229
    [42]
    Gass V, Van der Schoot BH, De Rooij NF. Nanofluid handling by micro-flow-sensor based on drag force measurements//Proceedings IEEE Micro Electro Mechanical Systems. IEEE, 1993: 167-172
    [43]
    Rodrigues T, Galindo-Rosales FJ, Campo-Deaño L. Towards an optimal pressure tap design for fluid-flow characterisation at microscales. Materials, 2019, 12(7): 1086 doi: 10.3390/ma12071086
    [44]
    Shakir A, Srihari K, Murcko B, et al. Flow sensor using micromachined pressure sensor//Sensors, 2008 IEEE. IEEE, 2008: 62-65
    [45]
    Sharma P, Motte J F, Fournel F, et al. A direct sensor to measure minute liquid flow rates. Nano Letters, 2018, 18(9): 5726-5730 doi: 10.1021/acs.nanolett.8b02332
    [46]
    Salipante P, Hudson SD, Schmidt JW, et al. Microparticle tracking velocimetry as a tool for microfluidic flow measurements. Experiments in Fluids, 2017, 58: 1-10 doi: 10.1007/s00348-016-2278-6
    [47]
    Ogheard F, Cassette P, Boudaoud AW. Development of an optical measurement method for “sampled” micro-volumes and nano-flow rates. Flow Measurement and Instrumentation, 2020, 73: 101746 doi: 10.1016/j.flowmeasinst.2020.101746
    [48]
    Ahrens M, Klein S, Nestler B, et al. Design and uncertainty assessment of a setup for calibration of microfluidic devices down to 5 nL/min. Measurement Science and Technology, 2013, 25(1): 015301
    [49]
    Richter M, Woias P, Weiβ D. Microchannels for applications in liquid dosing and flow-rate measurement. Sensors and Actuators A: Physical, 1997, 62(1-3): 480-483 doi: 10.1016/S0924-4247(97)01486-6
    [50]
    Bissig H, Petter HT, Lucas P, et al. Primary standards for measuring flow rates from 100 nL/min to 1 mL/min-gravimetric principle. Biomedical Engineering/Biomedizinische Technik, 2015, 60(4): 301-316
    [51]
    Florestan O, Sandy M, Julien S. Recent improvements of the French liquid micro-flow reference facility. Measurement Science and Technology, 2018, 29(2): 024007 doi: 10.1088/1361-6501/aa97ef
    [52]
    Schmidt JW, Wright JD. Micro-flow calibration facility at NIST//9th International Symposium on Fluid Flow Measurement (ISFFM). Arlington, VA. 14-17 April, 2015
    [53]
    刘赵淼, 逄燕, 申峰. 几何尺寸对矩形微通道液体流动和传热性能的影响. 机械工程学报, 2012, 48: 139-145 (Liu Zhaomiao, Pang Yan, Shen Feng. Effects of geometric dimensions on liquid flow and heat transfer performance in rectangular microchannels. Chinese Journal of Mechanical Engineering, 2012, 48: 139-145 (in Chinese)

    Liu Zhaomiao, Pang Yan, Shen Feng. Effects of geometric dimensions on liquid flow and heat transfer performance in rectangular microchannels. Chinese Journal of Mechanical Engineering, 2012, 48: 139-145 (in Chinese)
    [54]
    Boillat MA, Van der Wiel AJ, Hoogerwerf AC, et al. A differential pressure liquid flow sensor for flow regulation and dosing systems//Proceedings IEEE Micro Electro Mechanical Systems. IEEE, 1995: 350
    [55]
    Oosterbroek RE, Lammerink TSJ, Berenschot JW, et al. A micromachined pressure/flow-sensor. Sensors and Actuators A: Physical, 1999, 77(3): 167-177 doi: 10.1016/S0924-4247(99)00188-0
    [56]
    Wexler JS, Trinh PH, Berthet H, et al. Bending of elastic fibres in viscous flows: The influence of confinement. Journal of Fluid Mechanics, 2013, 720: 517-544 doi: 10.1017/jfm.2013.49
    [57]
    Liu C. Micromachined biomimetic artificial haircell sensors. Bioinspiration and Biomimetics, 2007, 2(4): S162 doi: 10.1088/1748-3182/2/4/S05
    [58]
    Santiago JG, Wereley ST, Meinhart CD, et al. A particle image velocimetry system for microfluidics. Experiments in Fluids, 1998, 25(4): 316-319 doi: 10.1007/s003480050235
    [59]
    Kinoshita H, Kaneda S, Fujii T, et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on A Chip, 2007, 7(3): 338-346 doi: 10.1039/B617391H
    [60]
    李晓辉, 王宏伟, 黄湛等. 层析粒子图像测速技术研究进展. 实验流体力学, 2021, 35(1): 86-96 (Li Xiaohui, Wang Hongwei, Huang Zhan, et al. Research progress of particle tomography velocity measurement. Experimental Fluid Mechanics, 2021, 35(1): 86-96 (in Chinese) doi: 10.11729/syltlx20190160

    Li Xiaohui, Wang Hongwei, Huang Zhan, et al. Research progress of particle tomography velocity measurement. Experimental Fluid Mechanics, 2021, 35(1): 86-96 (in Chinese) doi: 10.11729/syltlx20190160
    [61]
    Tu H, Wang Z, Gao Q, et al. Tomographic PIV investigation on near-wake structures of a hemisphere immersed in a laminar boundary layer. Journal of Fluid Mechanics, 2023, 971: A36 doi: 10.1017/jfm.2023.621
    [62]
    Czarske J, Büttner L, Razik T, et al. Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Measurement Science and Technology, 2002, 13(12): 1979 doi: 10.1088/0957-0233/13/12/324
    [63]
    Rizzi F, Qualtieri A, Dattoma T, et al. Biomimetics of underwater hair cell sensing. Microelectronic Engineering, 2015, 132: 90-97 doi: 10.1016/j.mee.2014.10.011
    [64]
    EURAMET. Final publishable JRP report MetroNORM: IND57. Eur Metrol Res Program, 2017: 28
    [65]
    Leger L, Joanny JF. Liquid spreading. Reports on Progress in Physics, 1992, 55(4): 431 doi: 10.1088/0034-4885/55/4/001
    [66]
    Joanny JF, De Gennes PG. A model for contact angle hysteresis. The Journal of Chemical Physics, 1984, 81(1): 552-562 doi: 10.1063/1.447337
    [67]
    Ahrens M, Nestler B, Klein S, et al. An experimental setup for traceable measurement and calibration of liquid flow rates down to 5 nL/min. Biomedical Engineering/Biomedizinische Technik, 2015, 60(4): 337-345
  • Related Articles

    [1]Zou Hongxiang, Su Changsheng, Zhao Linchuan, Zhang Wenming, Wei Kexiang. RESEARCH PROGRESS OF WAVE ENERGY HARVESTING AND SELF-POWERED MARINE UNMANNED ELECTROMECHANICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2115-2131. DOI: 10.6052/0459-1879-23-334
    [2]Du Chengbin, Jin Licheng, Wu Zhiqin. DAMAGE INDEX METHOD FOR DETECTION OF FLAWS BASED ON DYNAMIC RESPONSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1841-1855. DOI: 10.6052/0459-1879-19-221
    [3]Qingguo Fei, Aiqun Li, Changqing Miao, Lingmi Zhang. Vibration sensor placement method based on principal subset selection[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 543-549. DOI: 10.6052/0459-1879-2008-4-2007-244
    [4]Mingyi Yang, Jichao chen. The theoretical analysis of acoustic plate wave in piezoelectric plate with finite fluid loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 479-484. DOI: 10.6052/0459-1879-2008-4-2007-301
    [5]Strain transferring analysis of embedded fiber bragg grating sensors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 435-441. DOI: 10.6052/0459-1879-2005-4-2004-160
    [6]Piezoelectric Cantilever Actuator Subjected To A Linearly Distributed Loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 305-310. DOI: 10.6052/0459-1879-2004-3-2002-039
    [7]ACTIVE CONTROL OF PIEZOELECTRIC INTELLIGENT ANNULAR PLATES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 366-371. DOI: 10.6052/0459-1879-1999-3-1995-042
    [8]AN OPTICAL FIBER STRAIN SENSOR METHOD IN VARYING TEMPERATURE ENVIRONMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 590-594. DOI: 10.6052/0459-1879-1997-5-1995-270
    [9]A NOVEL FIBEROPTIC STRESS SENSOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(2): 248-251. DOI: 10.6052/0459-1879-1997-2-1995-223
    [10]NUMERICAL ANALYSIS FOR DETECTION OF DELAMINAION IN LAMINATES BY PIEZOELECTRIC SENSORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 58-65. DOI: 10.6052/0459-1879-1995-S-1995-503
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (243) PDF downloads (70) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return