Citation: | Hou Likai, Fan Xu, Jin Yuzhuo, Liu Mingyang, Bao Fubing. Research progress of liquid micro-flow measurement techniques. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1573-1584. DOI: 10.6052/0459-1879-23-500 |
[1] |
市场监管总局、科技部、工业和信息化部、国资委、知识产权局. 关于加强国家现代先进测量体系建设的指导意见. 中国. 2022: 国市监计量发〔2021〕2086号 (State Administration for Market Regulation, Ministry of Science and Technology, Ministry of Industry and Information Technology, State-owned Assets Supervision and Administration Commission, Intellectual Property Office. Guiding Opinions on Strengthening the Construction of National Modern Advanced Measurement System. China. 2022: State Market Supervision and Metrology (2021) No. 2086 (in Chinese)
State Administration for Market Regulation, Ministry of Science and Technology, Ministry of Industry and Information Technology, State-owned Assets Supervision and Administration Commission, Intellectual Property Office. Guiding Opinions on Strengthening the Construction of National Modern Advanced Measurement System. China. 2022: State Market Supervision and Metrology (2021) No. 2086 (in Chinese)
|
[2] |
国务院. 计量发展规划(2021-2035年). 中国. 2022: 国发〔2021〕37号 (The State Council. China. Metrological Development Plan (2021-2035). 2022: State (2021) No. 37 (in Chinese)
The State Council. China. Metrological Development Plan (2021-2035). 2022: State (2021) No. 37 (in Chinese)
|
[3] |
吴健康. 复杂微流体系统流动-电场-热传导耦合作用的若干基础问题和应用//庆祝中国力学学会成立50周年暨中国力学学会学术大会(CCTAM2007). 北京, 2007: 539-540 (Wu Jiankang. Some basic problems and applications of flow-electric field-heat transfer coupling in complex microfluidic systems//Celebrating the 50th Anniversary of the Chinese Mechanics Society and the Academic Conference of the Chinese Mechanics Society (CCTAM2007). Beijing, 2007: 539-540 (in Chinese)
Wu Jiankang. Some basic problems and applications of flow-electric field-heat transfer coupling in complex microfluidic systems//Celebrating the 50th Anniversary of the Chinese Mechanics Society and the Academic Conference of the Chinese Mechanics Society (CCTAM2007). Beijing, 2007: 539-540 (in Chinese)
|
[4] |
龚磊, 吴健康. 微通道液体流动双电层阻力效应. 应用数学与力学, 2006, 27(17): 1219-1225 (Gong Lei, Wu Jiankang. Double-layer resistance effect of microchannel liquid flow. Journal of Applied Mathematics and Mechanics, 2006, 27(17): 1219-1225 (in Chinese)
Gong Lei, Wu Jiankang. Double-layer resistance effect of microchannel liquid flow. Journal of Applied Mathematics and Mechanics, 2006, 27(17): 1219-1225 (in Chinese)
|
[5] |
Van De Pol FCM, Branebjerg J. Micro liquid-handling devices-a review//Micro System Technologies 90: 1st International Conference on Micro Electro, Opto, Mechanic Systems and Components. Berlin, 10-13 September 1990. Springer Berlin Heidelberg, 1990: 799-805
|
[6] |
Nguyen N. Micromachined flow sensors-a review. Flow Meas Instrum, 1997, 8(1): 7-16
|
[7] |
Kuo JT W, Yu L, Meng E. Micromachined thermal flow sensors-A review. Micromachines, 2012, 3(3): 550-573
|
[8] |
Ejeian F, Azadi S, Razmjou A, et al. Design and applications of MEMS flow sensors: A review. Sensors and Actuators A: Physical, 2019, 295: 483-502 doi: 10.1016/j.sna.2019.06.020
|
[9] |
李战华, 吴健康, 胡国庆等. 微流控芯片中的流体流动. 北京: 科学出版社, 2012 (Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese)
Li Zhanhua, Wu Jiankang, Hu Guoqing, et al. Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese)
|
[10] |
陈晓东, 胡国庆. 微流控器件中的多相流动. 力学进展, 2015, 45: 201503 (Chen Xiaodong, Hu Guoqing. Multiphase flow in microfluidic devices. Advances in Mechanics, 2015, 45: 201503 (in Chinese) doi: 10.6052/1000-0992-14-063
Chen Xiaodong, Hu Guoqing. Multiphase flow in microfluidic devices. Advances in Mechanics, 2015, 45: 201503 (in Chinese) doi: 10.6052/1000-0992-14-063
|
[11] |
龚茂淑. 容积式气体流量计的一般规定. 仪器仪表标准化与计量, 1994, 2: 39-43 (Gong Maoshu. General regulations of positive displacement gas flowmeter. Instrument Standardization and Metrology, 1994, 2: 39-43 (in Chinese)
Gong Maoshu. General regulations of positive displacement gas flowmeter. Instrument Standardization and Metrology, 1994, 2: 39-43 (in Chinese)
|
[12] |
李冬, 孙建亭, 杜广生等. 结构参数对超声波流量计水流特性影响的研究. 仪器仪表学报, 2016, 37(4): 945-951 (Li Dong, Sun Jianting, Du Guangsheng, et al. Research on the effects of structural parameters on the ultrasonic flowmeter flow. Chinese Journal of Scientific Instrument, 2016, 37(4): 945-951 (in Chinese) doi: 10.3969/j.issn.0254-3087.2016.04.029
Li Dong, Sun Jianting, Du Guangsheng, et al. Research on the effects of structural parameters on the ultrasonic flowmeter flow. Chinese Journal of Scientific Instrument, 2016, 37(4): 945-951 (in Chinese) doi: 10.3969/j.issn.0254-3087.2016.04.029
|
[13] |
罗凡, 甘蓉, 赵普俊等. 科里奥利质量流量计传感器零点模型研究及应用. 仪器仪表学报, 2021, 41(8): 15-23 (Luo Fan, Gan Rong, Zhao Pujun, et al. Research and application of coriolis mass flowmeter sensor zero model. Chinese Journal of Scientific Instrument, 2021, 41(8): 15-23 (in Chinese)
Luo Fan, Gan Rong, Zhao Pujun, et al. Research and application of coriolis mass flowmeter sensor zero model. Chinese Journal of Scientific Instrument, 2021, 41(8): 15-23 (in Chinese)
|
[14] |
杨辉跃, 涂亚庆, 毛育文. 科氏流量计相位差估计的ap-Hilbert法. 仪器仪表学报, 2019, 40(1): 35-42 (Yang Huiyue, Tu Yaqing, Mao Yuwen. Coriolis flowmeter method of phase difference estimation ap-the Hilbert. Chinese Journal of Scientific Instrument, 2019, 40(1): 35-42 (in Chinese)
Yang Huiyue, Tu Yaqing, Mao Yuwen. Coriolis flowmeter method of phase difference estimation ap-the Hilbert. Chinese Journal of Scientific Instrument, 2019, 40(1): 35-42 (in Chinese)
|
[15] |
Alvesteffer WJ, Baker WC, Cole R, et al. A brief history of the thermal mass flow meter and controller//SVC Summer Bulletin, 2010: 42-46
|
[16] |
Van Putten AFP. An integrated silicon anemometer//IEE Colloquium on Solid State and Smart Sensors. IET, 1988: 4/1-4/6
|
[17] |
Papadopoulos G, Hammad KJ. A PIV-based flow meter//Proceedings of the ASME Fluids Engineering Division Summer Meeting. The Society, 2000, 1: 229
|
[18] |
Meinhart CD, Wereley ST, Santiago JG. PIV measurements of a microchannel flow. Experiments in Fluids, 1999, 27(5): 414-419 doi: 10.1007/s003480050366
|
[19] |
Coriolis G, Coriolis GG. Théorie Mathématique des Effets du jeu de Billard. Carilian-Goeury, 1835
|
[20] |
Groenesteijn J. Microfluidic platform for Coriolis-based sensor and actuator systems. [PhD Thesis]. Nederland: University of Twente, 2016
|
[21] |
Enoksson P, Stemme G, Stemme E. A silicon resonant sensor structure for Coriolis mass-flow measurements. Journal of Microelectromechanical Systems, 1997, 6(2): 119-125 doi: 10.1109/84.585789
|
[22] | |
[23] |
Haneveld J, Lammerink TSJ, de Boer MJ, et al. Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor. Journal of Micromechanics and Microengineering, 2010, 20(12): 125001 doi: 10.1088/0960-1317/20/12/125001
|
[24] |
Schut TVP, Alveringh D, Sparreboom W, et al. Fully integrated mass flow, pressure, density and viscosity sensor for both liquids and gases//IEEE Micro Electro Mechanical Systems (MEMS). IEEE, 2018: 218-221
|
[25] |
Escobar JE, Molina J, Gil-Santos E, et al. Nanomechanical sensing for mass flow control in nanowire-based open nanofluidic systems. ACS Nano, 2023, 17(21): 21044-21055 doi: 10.1021/acsnano.3c04020
|
[26] |
Thomas CC. The measurement of gases. Journal of the Franklin Institute, 1911, 172(5): 411-460
|
[27] |
Van Putten AFP. An integrated silicon double bridge anemometer. Sensors and Actuators, 1983, 4: 387-396 doi: 10.1016/0250-6874(83)85049-5
|
[28] |
King LV. XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philosophical Transactions of the Royal Society of London. series A, containing papers of a mathematical or physical character, 1914, 214(509-522): 373-432
|
[29] |
Dijkstra M, Boer M, Berenschot JW, et al. Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels. Sensors and Actuators A Physical, 2008, 143(1): 1-6 doi: 10.1016/j.sna.2007.12.005
|
[30] |
Zhang Q, Wang Y, Tao R, et al. Flexible ZnO thin film acoustic wave device for gas flow rate measurement. Journal of Micromechanics and Microengineering, 2020, 30(9): 095010 doi: 10.1088/1361-6439/ab9d2a
|
[31] |
Yoon E, Wise KD. An integrated mass flow sensor with on-chip CMOS interface circuitry. IEEE Transactions on Electron Devices, 1992, 39(6): 1376-1386 doi: 10.1109/16.137317
|
[32] | |
[33] |
Nguyen NT, Huang XY, Toh KC. Thermal flow sensor for ultra-low velocities based on printed circuit board technology. Measurement Science and Technology, 2001, 12(12): 2131 doi: 10.1088/0957-0233/12/12/314
|
[34] |
Shaun F, Sarkar S, Marty F, et al. Sensitivity optimization of micro-machined thermo-resistive flow-rate sensors on silicon substrates. Journal of Micromechanics and Microengineering, 2018, 28(7): 074002 doi: 10.1088/1361-6439/aab6bd
|
[35] | |
[36] |
Berthet H, Jundt J, Durivault J, et al. Time-of-flight thermal flowrate sensor for lab-on-chip applications, Lab on A Chip, 2011, 11(2): 215-223
|
[37] |
Offenzeller C, Knoll M, Voglhuber-Brunnmaier T, et al. Fully screen printed thermocouple and microheater applied for time-of-flight sensing in microchannels. IEEE Sensors Journal, 2018, 18(21): 8685-8692 doi: 10.1109/JSEN.2018.2868161
|
[38] |
Cooksey GA, Patrone PN, Hands JR, et al. Dynamic measurement of nanoflows: realization of an optofluidic flow meter to the nanoliter-per-minute scale. Analytical Chemistry, 2019, 91(16): 10713-10722 doi: 10.1021/acs.analchem.9b02056
|
[39] |
Ahrens R, Schlote-Holubek K. A micro flow sensor from a polymer for gases and liquids. Journal of Micromechanics and Microengineering, 2009, 19(7): 074006 doi: 10.1088/0960-1317/19/7/074006
|
[40] |
Wu S, Lin Q, Yuen Y, et al. MEMS flow sensors for nano-fluidic applications. Sensors and Actuators A: Physical, 2001, 89(1-2): 152-158 doi: 10.1016/S0924-4247(00)00541-0
|
[41] |
Noeth N, Keller SS, Boisen A. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors, 2013, 14(1): 229-244 doi: 10.3390/s140100229
|
[42] |
Gass V, Van der Schoot BH, De Rooij NF. Nanofluid handling by micro-flow-sensor based on drag force measurements//Proceedings IEEE Micro Electro Mechanical Systems. IEEE, 1993: 167-172
|
[43] |
Rodrigues T, Galindo-Rosales FJ, Campo-Deaño L. Towards an optimal pressure tap design for fluid-flow characterisation at microscales. Materials, 2019, 12(7): 1086 doi: 10.3390/ma12071086
|
[44] |
Shakir A, Srihari K, Murcko B, et al. Flow sensor using micromachined pressure sensor//Sensors, 2008 IEEE. IEEE, 2008: 62-65
|
[45] |
Sharma P, Motte J F, Fournel F, et al. A direct sensor to measure minute liquid flow rates. Nano Letters, 2018, 18(9): 5726-5730 doi: 10.1021/acs.nanolett.8b02332
|
[46] |
Salipante P, Hudson SD, Schmidt JW, et al. Microparticle tracking velocimetry as a tool for microfluidic flow measurements. Experiments in Fluids, 2017, 58: 1-10 doi: 10.1007/s00348-016-2278-6
|
[47] |
Ogheard F, Cassette P, Boudaoud AW. Development of an optical measurement method for “sampled” micro-volumes and nano-flow rates. Flow Measurement and Instrumentation, 2020, 73: 101746 doi: 10.1016/j.flowmeasinst.2020.101746
|
[48] |
Ahrens M, Klein S, Nestler B, et al. Design and uncertainty assessment of a setup for calibration of microfluidic devices down to 5 nL/min. Measurement Science and Technology, 2013, 25(1): 015301
|
[49] |
Richter M, Woias P, Weiβ D. Microchannels for applications in liquid dosing and flow-rate measurement. Sensors and Actuators A: Physical, 1997, 62(1-3): 480-483 doi: 10.1016/S0924-4247(97)01486-6
|
[50] |
Bissig H, Petter HT, Lucas P, et al. Primary standards for measuring flow rates from 100 nL/min to 1 mL/min-gravimetric principle. Biomedical Engineering/Biomedizinische Technik, 2015, 60(4): 301-316
|
[51] |
Florestan O, Sandy M, Julien S. Recent improvements of the French liquid micro-flow reference facility. Measurement Science and Technology, 2018, 29(2): 024007 doi: 10.1088/1361-6501/aa97ef
|
[52] |
Schmidt JW, Wright JD. Micro-flow calibration facility at NIST//9th International Symposium on Fluid Flow Measurement (ISFFM). Arlington, VA. 14-17 April, 2015
|
[53] |
刘赵淼, 逄燕, 申峰. 几何尺寸对矩形微通道液体流动和传热性能的影响. 机械工程学报, 2012, 48: 139-145 (Liu Zhaomiao, Pang Yan, Shen Feng. Effects of geometric dimensions on liquid flow and heat transfer performance in rectangular microchannels. Chinese Journal of Mechanical Engineering, 2012, 48: 139-145 (in Chinese)
Liu Zhaomiao, Pang Yan, Shen Feng. Effects of geometric dimensions on liquid flow and heat transfer performance in rectangular microchannels. Chinese Journal of Mechanical Engineering, 2012, 48: 139-145 (in Chinese)
|
[54] |
Boillat MA, Van der Wiel AJ, Hoogerwerf AC, et al. A differential pressure liquid flow sensor for flow regulation and dosing systems//Proceedings IEEE Micro Electro Mechanical Systems. IEEE, 1995: 350
|
[55] |
Oosterbroek RE, Lammerink TSJ, Berenschot JW, et al. A micromachined pressure/flow-sensor. Sensors and Actuators A: Physical, 1999, 77(3): 167-177 doi: 10.1016/S0924-4247(99)00188-0
|
[56] |
Wexler JS, Trinh PH, Berthet H, et al. Bending of elastic fibres in viscous flows: The influence of confinement. Journal of Fluid Mechanics, 2013, 720: 517-544 doi: 10.1017/jfm.2013.49
|
[57] |
Liu C. Micromachined biomimetic artificial haircell sensors. Bioinspiration and Biomimetics, 2007, 2(4): S162 doi: 10.1088/1748-3182/2/4/S05
|
[58] |
Santiago JG, Wereley ST, Meinhart CD, et al. A particle image velocimetry system for microfluidics. Experiments in Fluids, 1998, 25(4): 316-319 doi: 10.1007/s003480050235
|
[59] |
Kinoshita H, Kaneda S, Fujii T, et al. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on A Chip, 2007, 7(3): 338-346 doi: 10.1039/B617391H
|
[60] |
李晓辉, 王宏伟, 黄湛等. 层析粒子图像测速技术研究进展. 实验流体力学, 2021, 35(1): 86-96 (Li Xiaohui, Wang Hongwei, Huang Zhan, et al. Research progress of particle tomography velocity measurement. Experimental Fluid Mechanics, 2021, 35(1): 86-96 (in Chinese) doi: 10.11729/syltlx20190160
Li Xiaohui, Wang Hongwei, Huang Zhan, et al. Research progress of particle tomography velocity measurement. Experimental Fluid Mechanics, 2021, 35(1): 86-96 (in Chinese) doi: 10.11729/syltlx20190160
|
[61] |
Tu H, Wang Z, Gao Q, et al. Tomographic PIV investigation on near-wake structures of a hemisphere immersed in a laminar boundary layer. Journal of Fluid Mechanics, 2023, 971: A36 doi: 10.1017/jfm.2023.621
|
[62] |
Czarske J, Büttner L, Razik T, et al. Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Measurement Science and Technology, 2002, 13(12): 1979 doi: 10.1088/0957-0233/13/12/324
|
[63] |
Rizzi F, Qualtieri A, Dattoma T, et al. Biomimetics of underwater hair cell sensing. Microelectronic Engineering, 2015, 132: 90-97 doi: 10.1016/j.mee.2014.10.011
|
[64] |
EURAMET. Final publishable JRP report MetroNORM: IND57. Eur Metrol Res Program, 2017: 28
|
[65] |
Leger L, Joanny JF. Liquid spreading. Reports on Progress in Physics, 1992, 55(4): 431 doi: 10.1088/0034-4885/55/4/001
|
[66] |
Joanny JF, De Gennes PG. A model for contact angle hysteresis. The Journal of Chemical Physics, 1984, 81(1): 552-562 doi: 10.1063/1.447337
|
[67] |
Ahrens M, Nestler B, Klein S, et al. An experimental setup for traceable measurement and calibration of liquid flow rates down to 5 nL/min. Biomedical Engineering/Biomedizinische Technik, 2015, 60(4): 337-345
|
[1] | Zou Hongxiang, Su Changsheng, Zhao Linchuan, Zhang Wenming, Wei Kexiang. RESEARCH PROGRESS OF WAVE ENERGY HARVESTING AND SELF-POWERED MARINE UNMANNED ELECTROMECHANICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2115-2131. DOI: 10.6052/0459-1879-23-334 |
[2] | Du Chengbin, Jin Licheng, Wu Zhiqin. DAMAGE INDEX METHOD FOR DETECTION OF FLAWS BASED ON DYNAMIC RESPONSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1841-1855. DOI: 10.6052/0459-1879-19-221 |
[3] | Qingguo Fei, Aiqun Li, Changqing Miao, Lingmi Zhang. Vibration sensor placement method based on principal subset selection[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 543-549. DOI: 10.6052/0459-1879-2008-4-2007-244 |
[4] | Mingyi Yang, Jichao chen. The theoretical analysis of acoustic plate wave in piezoelectric plate with finite fluid loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 479-484. DOI: 10.6052/0459-1879-2008-4-2007-301 |
[5] | Strain transferring analysis of embedded fiber bragg grating sensors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 435-441. DOI: 10.6052/0459-1879-2005-4-2004-160 |
[6] | Piezoelectric Cantilever Actuator Subjected To A Linearly Distributed Loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 305-310. DOI: 10.6052/0459-1879-2004-3-2002-039 |
[7] | ACTIVE CONTROL OF PIEZOELECTRIC INTELLIGENT ANNULAR PLATES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 366-371. DOI: 10.6052/0459-1879-1999-3-1995-042 |
[8] | AN OPTICAL FIBER STRAIN SENSOR METHOD IN VARYING TEMPERATURE ENVIRONMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 590-594. DOI: 10.6052/0459-1879-1997-5-1995-270 |
[9] | A NOVEL FIBEROPTIC STRESS SENSOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(2): 248-251. DOI: 10.6052/0459-1879-1997-2-1995-223 |
[10] | NUMERICAL ANALYSIS FOR DETECTION OF DELAMINAION IN LAMINATES BY PIEZOELECTRIC SENSORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 58-65. DOI: 10.6052/0459-1879-1995-S-1995-503 |