EI、Scopus 收录
中文核心期刊
Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. Defect activation mechanism of creep in La-based amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1037-1046. DOI: 10.6052/0459-1879-23-482
Citation: Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. Defect activation mechanism of creep in La-based amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1037-1046. DOI: 10.6052/0459-1879-23-482

DEFECT ACTIVATION MECHANISM OF CREEP IN LA-BASED AMORPHOUS ALLOY

  • Received Date: October 06, 2023
  • Accepted Date: January 22, 2024
  • Available Online: January 22, 2024
  • Published Date: January 23, 2024
  • As a potential structural and functional material, the study of deformation behavior in amorphous alloys has consistently attracted widespread attention. The intrinsic correlation between mechanical/physical properties and the microstructural heterogeneity of amorphous alloy is an important issue in the field of the solid mechanics and solid physics. In the current work, La62Cu12Ni12Al14 amorphous alloy was selected as the model alloy, benefitting from the glass forming ability (GFA) and unique mechanical properties. The current work mainly focused on the creep deformation behavior of the La-based amorphous alloy. In parallel, the evolution of the activation of defects during the creep process was probed. In the framework of the stretched exponential equation and relaxation time spectrum, evolution of stretch exponent, characteristic relaxation time, and the distribution of relaxation time intensity in amorphous alloys over physical aging time were specifically investigated in order to probe the physical aging below the glass transition temperature on the creep behavior. The constitutive equation based on the quasi-point defects theory can be used to describe the creep deformation of amorphous alloys. The formation, expansion, and irreversible merging of shear microdomains were employed to provide a rational explanation for the evolution patterns of elastic, viscoelastic, and plastic deformation components. On the basis of the tensile creep behavior of amorphous alloy, the evolution in defect activation within amorphous alloys has been clarified, simultaneously, the research sheds new light on further investigating the microscopic origins of structural heterogeneity in amorphous alloys.
  • [1]
    Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [2]
    Xu DD, Zhou BL, Wang QQ, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys. Corrosion Science, 2018, 138: 20-27 doi: 10.1016/j.corsci.2018.04.006
    [3]
    Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59(6): 2243-2267 doi: 10.1016/j.actamat.2010.11.027
    [4]
    Khmich A, Hassani A, Sbiaai K, et al. Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106546 doi: 10.1016/j.ijmecsci.2021.106546
    [5]
    Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [6]
    Sun BA, Song KK, Pauly S, et al. Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85: 34-51 doi: 10.1016/j.ijplas.2016.06.004
    [7]
    Zhou H, Qu S, Yang W. An atomistic investigation of structural evolution in metallic glass matrix composites. International Journal of Plasticity, 2013, 44: 147-160 doi: 10.1016/j.ijplas.2013.01.002
    [8]
    Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011, 106(12): 125504 doi: 10.1103/PhysRevLett.106.125504
    [9]
    Nomoto K, Ceguerra AV, Gammer C, et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44: 48-57 doi: 10.1016/j.mattod.2020.10.032
    [10]
    Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60-64 doi: 10.1038/s41586-021-03354-0
    [11]
    Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nature Communications, 2018, 9(1): 3965 doi: 10.1038/s41467-018-06476-8
    [12]
    Cheng YQ, Ma E. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011, 56(4): 379-473 doi: 10.1016/j.pmatsci.2010.12.002
    [13]
    Tang C, Harrowell P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Materials, 2013, 12(6): 507-511 doi: 10.1038/nmat3631
    [14]
    Afonin GV, Mitrofanov YP, Kobelev NP, et al. Relationship between the enthalpies of structural relaxation, crystallization and melting in metallic glass-forming systems. Scripta Materialia, 2019, 166: 6-9 doi: 10.1016/j.scriptamat.2019.02.030
    [15]
    Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [16]
    Song J, Zhu W, Wei X. Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106570 doi: 10.1016/j.ijmecsci.2021.106570
    [17]
    乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038

    Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
    [18]
    Yu HB, Wang WH, Samwer K. The β relaxation in metallic glasses: An overview. Materials Today, 2013, 16(5): 183-191 doi: 10.1016/j.mattod.2013.05.002
    [19]
    Cao P, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): 13631-13636
    [20]
    Dong J, Huan Y, Huang B, et al. Unusually thick shear-softening surface of micrometer-size metallic glasses. The Innovation, 2021, 2(2): 100106 doi: 10.1016/j.xinn.2021.100106
    [21]
    Cohen MH, Turnbull D. Molecular transport in liquids and glasses. The Journal of Chemical Physics, 2004, 31(5): 1164-1169
    [22]
    Argon AS, Kuo HY. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Materials Science Engineering, 1979, 39(1): 101-109 doi: 10.1016/0025-5416(79)90174-5
    [23]
    Cavaille J, Perez J, Johari G. Molecular theory for the rheology of glasses and polymers. Physical Review B, 1989, 39(4): 2411-2422 doi: 10.1103/PhysRevB.39.2411
    [24]
    Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
    [25]
    Zhang LT, Duan YJ, Wada T, et al. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materials Science & Technology, 2021, 83: 248-255
    [26]
    Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 2016, 47(12): 5871-5875 doi: 10.1007/s11661-016-3469-8
    [27]
    Yuan CC, Lyu ZW, Pang CM, et al. Pronounced nanoindentation creep deformation in Cu-doped CoFe-based metallic glasses. Journal of Alloys and Compounds, 2019, 806: 246-253 doi: 10.1016/j.jallcom.2019.07.226
    [28]
    Castellero A, Moser B, Uhlenhaut DI, et al. Room-temperature creep and structural relaxation of Mg–Cu–Y metallic glasses. Acta Materialia, 2008, 56(15): 3777-3785 doi: 10.1016/j.actamat.2008.04.021
    [29]
    Qiao JC, Chen YH, Casalini R, et al. Main α relaxation and slow β relaxation processes in a La30Ce30Al15Co25 metallic glass. Journal of Materials Science & Technology, 2019, 35(6): 982-986
    [30]
    Guo J, Joo SH, Pi DH, et al. Effect of high-pressure torsion on the thermal and mechanical properties of La62Cu12Ni12Al14 bulk metallic glass. Advanced Engineering Materials, 2019, 21(3): 1800918 doi: 10.1002/adem.201800918
    [31]
    Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005, 97(3): 033506
    [32]
    Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 2014, 5(1): 5823 doi: 10.1038/ncomms6823
    [33]
    Xu ZR, Qiao JC, Wang J, et al. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep. Journal of Materials Science & Technology, 2022, 99: 39-47 doi: 10.1016/j.jmst.2021.05.036
    [34]
    Zhang C, Qiao JC, Pelletier JM, et al. Thermal activation in the Zr65Cu18Ni7Al10 metallic glass by creep deformation and stress relaxation. Scripta Materialia, 2016, 113: 180-184 doi: 10.1016/j.scriptamat.2015.11.001
    [35]
    Jiao W, Wen P, Peng HL, et al. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903
    [36]
    徐宗睿, 郝奇, 张浪渟等. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 (Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese) doi: 10.6052/0459-1879-22-059

    Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese) doi: 10.6052/0459-1879-22-059
    [37]
    Hao Q, Qiao JC, Goncharova EV, et al. Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass. Chinese Physics B, 2020, 29(8): 086402 doi: 10.1088/1674-1056/ab969c
    [38]
    Tao K, Qiao JC, He QF, et al. Revealing the structural heterogeneity of metallic glass: Mechanical spectroscopy and nanoindentation experiments. International Journal of Mechanical Sciences, 2021, 201: 106469 doi: 10.1016/j.ijmecsci.2021.106469
    [39]
    Cohen MH, Grest GS. Liquid-glass transition, a free-volume approach. Physical Review B, 1979, 20(3): 1077-1098 doi: 10.1103/PhysRevB.20.1077
    [40]
    Egami T. Atomic level stresses. Progress in Materials Science, 2011, 56(6): 637-653 doi: 10.1016/j.pmatsci.2011.01.004
    [41]
    王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176105 (Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)

    Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
    [42]
    Lukichev A. Physical meaning of the stretched exponential Kohlrausch function. Physics Letters A, 2019, 383(24): 2983-2987 doi: 10.1016/j.physleta.2019.06.029
    [43]
    Bergman R. General susceptibility functions for relaxations in disordered systems. Journal of Applied Physics, 2000, 88(3): 1356-1365 doi: 10.1063/1.373824
    [44]
    Lindsey CP, Patterson GD. Detailed comparison of the williams–Watts and Cole-Davidson functions. The Journal of Chemical Physics, 1980, 73(7): 3348-3357 doi: 10.1063/1.440530
    [45]
    Feng SD, Qi L, Wang LM, et al. Structural feature of Cu64Zr36 metallic glass on nanoscale: Densely-packed clusters with loosely-packed surroundings. Scripta Materialia, 2016, 115: 57-61 doi: 10.1016/j.scriptamat.2015.12.038
    [46]
    Tsai P, Kranjc K, Flores KM. Hierarchical heterogeneity and an elastic microstructure observed in a metallic glass alloy. Acta Materialia, 2017, 139: 11-20 doi: 10.1016/j.actamat.2017.07.061
    [47]
    Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 1990, 39(1-2): 69-79 doi: 10.1016/0167-2738(90)90028-P
    [48]
    Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
    [49]
    Perez J. Physics and Mechanics of Amorphous Polymers. CRC Press, 1998
    [50]
    Rinaldi R, Gaertner R, Chazeau L, et al. Modelling of the mechanical behaviour of amorphous glassy polymer based on the quasi point defect theory—Part I: Uniaxial validation on polycarbonate. International Journal of Non-Linear Mechanics, 2011, 46(3): 496-506 doi: 10.1016/j.ijnonlinmec.2010.11.004
    [51]
    Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
  • Related Articles

    [1]Xu Zongrui, Ma Xiyang, Qiao Jichao. PROBING INTO THE REGULATION MECHANISM OF DYNAMIC RELAXATION IN LA-BASED AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-15. DOI: 10.6052/0459-1879-25-174
    [2]Hao Qi, Yang Dongsheng, Eloi Pineda, Vitaly A. Khonik, Qiao Jichao. ANALYSIS OF ELASTIC MODULUS CHARACTERISTICS AND STRUCTURAL STATE EVOLUTION IN AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 948-957. DOI: 10.6052/0459-1879-24-536
    [3]Wu Jianying, Mo Shengte, Zhou Hao. COMPUTATIONAL MODELING OF DAMAGE AND FAILURE IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY: CHEMO-THERMO-HYGRO-MECHANICAL MULTI-PHYSICS COUPLING AND MULTI-DEFORMATION COMPETITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3521-3536. DOI: 10.6052/0459-1879-24-281
    [4]Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. PROBING ON MICROSTRUCTURAL HETEROGENEITY OF La-BASED METALLIC GLASS: BASED ON THE STRESS RELAXATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2616-2624. DOI: 10.6052/0459-1879-24-077
    [5]Zhu Fan, Xing Guanghui, Jean-Marc Pelletier, Qiao Jichao. EFFECT OF Hf ELEMENT ADDITION ON DYNAMIC RELAXATION PROCESS OF CuZr-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2282-2293. DOI: 10.6052/0459-1879-24-049
    [6]Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255
    [7]Xu Zongrui, Hao Qi, Zhang Langting, Qiao Jichao. PROBING INTO THE CREEP MECHANISM OF AMORPHOUS ALLOY BASED ON QUASI-POINT THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600. DOI: 10.6052/0459-1879-22-059
    [8]Jiang Shouyan, Wan Chen, Sun Liguo, Du Chengbin. CRACK-LIKE DEFECT INVERSION MODEL BASED ON SBFEM AND DEEP LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2724-2735. DOI: 10.6052/0459-1879-21-360
    [9]Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368. DOI: 10.6052/0459-1879-20-004
    [10]QUASI-FLOW THEORY OF ELASTIC PLASTIC FINITE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 275-283. DOI: 10.6052/0459-1879-1994-3-1995-547
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (173) PDF downloads (48) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return