Citation: | Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. Defect activation mechanism of creep in La-based amorphous alloy. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1037-1046. DOI: 10.6052/0459-1879-23-482 |
[1] |
Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
|
[2] |
Xu DD, Zhou BL, Wang QQ, et al. Effects of Cr addition on thermal stability, soft magnetic properties and corrosion resistance of FeSiB amorphous alloys. Corrosion Science, 2018, 138: 20-27 doi: 10.1016/j.corsci.2018.04.006
|
[3] |
Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59(6): 2243-2267 doi: 10.1016/j.actamat.2010.11.027
|
[4] |
Khmich A, Hassani A, Sbiaai K, et al. Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106546 doi: 10.1016/j.ijmecsci.2021.106546
|
[5] |
Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
|
[6] |
Sun BA, Song KK, Pauly S, et al. Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85: 34-51 doi: 10.1016/j.ijplas.2016.06.004
|
[7] |
Zhou H, Qu S, Yang W. An atomistic investigation of structural evolution in metallic glass matrix composites. International Journal of Plasticity, 2013, 44: 147-160 doi: 10.1016/j.ijplas.2013.01.002
|
[8] |
Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011, 106(12): 125504 doi: 10.1103/PhysRevLett.106.125504
|
[9] |
Nomoto K, Ceguerra AV, Gammer C, et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44: 48-57 doi: 10.1016/j.mattod.2020.10.032
|
[10] |
Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60-64 doi: 10.1038/s41586-021-03354-0
|
[11] |
Zhu F, Song S, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses. Nature Communications, 2018, 9(1): 3965 doi: 10.1038/s41467-018-06476-8
|
[12] |
Cheng YQ, Ma E. Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011, 56(4): 379-473 doi: 10.1016/j.pmatsci.2010.12.002
|
[13] |
Tang C, Harrowell P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Materials, 2013, 12(6): 507-511 doi: 10.1038/nmat3631
|
[14] |
Afonin GV, Mitrofanov YP, Kobelev NP, et al. Relationship between the enthalpies of structural relaxation, crystallization and melting in metallic glass-forming systems. Scripta Materialia, 2019, 166: 6-9 doi: 10.1016/j.scriptamat.2019.02.030
|
[15] |
Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
|
[16] |
Song J, Zhu W, Wei X. Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106570 doi: 10.1016/j.ijmecsci.2021.106570
|
[17] |
乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
|
[18] |
Yu HB, Wang WH, Samwer K. The β relaxation in metallic glasses: An overview. Materials Today, 2013, 16(5): 183-191 doi: 10.1016/j.mattod.2013.05.002
|
[19] |
Cao P, Short MP, Yip S. Understanding the mechanisms of amorphous creep through molecular simulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): 13631-13636
|
[20] |
Dong J, Huan Y, Huang B, et al. Unusually thick shear-softening surface of micrometer-size metallic glasses. The Innovation, 2021, 2(2): 100106 doi: 10.1016/j.xinn.2021.100106
|
[21] |
Cohen MH, Turnbull D. Molecular transport in liquids and glasses. The Journal of Chemical Physics, 2004, 31(5): 1164-1169
|
[22] |
Argon AS, Kuo HY. Plastic flow in a disordered bubble raft (an analog of a metallic glass). Materials Science Engineering, 1979, 39(1): 101-109 doi: 10.1016/0025-5416(79)90174-5
|
[23] |
Cavaille J, Perez J, Johari G. Molecular theory for the rheology of glasses and polymers. Physical Review B, 1989, 39(4): 2411-2422 doi: 10.1103/PhysRevB.39.2411
|
[24] |
Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
|
[25] |
Zhang LT, Duan YJ, Wada T, et al. Dynamic mechanical relaxation behavior of Zr35Hf17.5Ti5.5Al12.5Co7.5Ni12Cu10 high entropy bulk metallic glass. Journal of Materials Science & Technology, 2021, 83: 248-255
|
[26] |
Zhang L, Yu P, Cheng H, et al. Nanoindentation creep behavior of an Al0.3CoCrFeNi high-entropy alloy. Metallurgical and Materials Transactions A, 2016, 47(12): 5871-5875 doi: 10.1007/s11661-016-3469-8
|
[27] |
Yuan CC, Lyu ZW, Pang CM, et al. Pronounced nanoindentation creep deformation in Cu-doped CoFe-based metallic glasses. Journal of Alloys and Compounds, 2019, 806: 246-253 doi: 10.1016/j.jallcom.2019.07.226
|
[28] |
Castellero A, Moser B, Uhlenhaut DI, et al. Room-temperature creep and structural relaxation of Mg–Cu–Y metallic glasses. Acta Materialia, 2008, 56(15): 3777-3785 doi: 10.1016/j.actamat.2008.04.021
|
[29] |
Qiao JC, Chen YH, Casalini R, et al. Main α relaxation and slow β relaxation processes in a La30Ce30Al15Co25 metallic glass. Journal of Materials Science & Technology, 2019, 35(6): 982-986
|
[30] |
Guo J, Joo SH, Pi DH, et al. Effect of high-pressure torsion on the thermal and mechanical properties of La62Cu12Ni12Al14 bulk metallic glass. Advanced Engineering Materials, 2019, 21(3): 1800918 doi: 10.1002/adem.201800918
|
[31] |
Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005, 97(3): 033506
|
[32] |
Wang Z, Sun BA, Bai HY, et al. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 2014, 5(1): 5823 doi: 10.1038/ncomms6823
|
[33] |
Xu ZR, Qiao JC, Wang J, et al. Comprehensive insights into the thermal and mechanical effects of metallic glasses via creep. Journal of Materials Science & Technology, 2022, 99: 39-47 doi: 10.1016/j.jmst.2021.05.036
|
[34] |
Zhang C, Qiao JC, Pelletier JM, et al. Thermal activation in the Zr65Cu18Ni7Al10 metallic glass by creep deformation and stress relaxation. Scripta Materialia, 2016, 113: 180-184 doi: 10.1016/j.scriptamat.2015.11.001
|
[35] |
Jiao W, Wen P, Peng HL, et al. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903
|
[36] |
徐宗睿, 郝奇, 张浪渟等. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报, 2022, 54(6): 1590-1600 (Xu Zongrui, Hao Qi, Zhang Langting, et al. Probing into the creep mechanism of amorphous alloy based on quasi-point theory. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600 (in Chinese) doi: 10.6052/0459-1879-22-059
|
[37] |
Hao Q, Qiao JC, Goncharova EV, et al. Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass. Chinese Physics B, 2020, 29(8): 086402 doi: 10.1088/1674-1056/ab969c
|
[38] |
Tao K, Qiao JC, He QF, et al. Revealing the structural heterogeneity of metallic glass: Mechanical spectroscopy and nanoindentation experiments. International Journal of Mechanical Sciences, 2021, 201: 106469 doi: 10.1016/j.ijmecsci.2021.106469
|
[39] |
Cohen MH, Grest GS. Liquid-glass transition, a free-volume approach. Physical Review B, 1979, 20(3): 1077-1098 doi: 10.1103/PhysRevB.20.1077
|
[40] |
Egami T. Atomic level stresses. Progress in Materials Science, 2011, 56(6): 637-653 doi: 10.1016/j.pmatsci.2011.01.004
|
[41] |
王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176105 (Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
Wang Zheng, Wang Weihua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103 (in Chinese)
|
[42] |
Lukichev A. Physical meaning of the stretched exponential Kohlrausch function. Physics Letters A, 2019, 383(24): 2983-2987 doi: 10.1016/j.physleta.2019.06.029
|
[43] |
Bergman R. General susceptibility functions for relaxations in disordered systems. Journal of Applied Physics, 2000, 88(3): 1356-1365 doi: 10.1063/1.373824
|
[44] |
Lindsey CP, Patterson GD. Detailed comparison of the williams–Watts and Cole-Davidson functions. The Journal of Chemical Physics, 1980, 73(7): 3348-3357 doi: 10.1063/1.440530
|
[45] |
Feng SD, Qi L, Wang LM, et al. Structural feature of Cu64Zr36 metallic glass on nanoscale: Densely-packed clusters with loosely-packed surroundings. Scripta Materialia, 2016, 115: 57-61 doi: 10.1016/j.scriptamat.2015.12.038
|
[46] |
Tsai P, Kranjc K, Flores KM. Hierarchical heterogeneity and an elastic microstructure observed in a metallic glass alloy. Acta Materialia, 2017, 139: 11-20 doi: 10.1016/j.actamat.2017.07.061
|
[47] |
Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 1990, 39(1-2): 69-79 doi: 10.1016/0167-2738(90)90028-P
|
[48] |
Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
|
[49] |
Perez J. Physics and Mechanics of Amorphous Polymers. CRC Press, 1998
|
[50] |
Rinaldi R, Gaertner R, Chazeau L, et al. Modelling of the mechanical behaviour of amorphous glassy polymer based on the quasi point defect theory—Part I: Uniaxial validation on polycarbonate. International Journal of Non-Linear Mechanics, 2011, 46(3): 496-506 doi: 10.1016/j.ijnonlinmec.2010.11.004
|
[51] |
Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
|
[1] | Xu Zongrui, Ma Xiyang, Qiao Jichao. PROBING INTO THE REGULATION MECHANISM OF DYNAMIC RELAXATION IN LA-BASED AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-15. DOI: 10.6052/0459-1879-25-174 |
[2] | Hao Qi, Yang Dongsheng, Eloi Pineda, Vitaly A. Khonik, Qiao Jichao. ANALYSIS OF ELASTIC MODULUS CHARACTERISTICS AND STRUCTURAL STATE EVOLUTION IN AMORPHOUS ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 948-957. DOI: 10.6052/0459-1879-24-536 |
[3] | Wu Jianying, Mo Shengte, Zhou Hao. COMPUTATIONAL MODELING OF DAMAGE AND FAILURE IN EARLY-AGE CONCRETE BASED ON THE UNIFIED PHASE-FIELD THEORY: CHEMO-THERMO-HYGRO-MECHANICAL MULTI-PHYSICS COUPLING AND MULTI-DEFORMATION COMPETITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3521-3536. DOI: 10.6052/0459-1879-24-281 |
[4] | Zhang Jian, Hao Qi, Xing Guanghui, Qiao Jichao. PROBING ON MICROSTRUCTURAL HETEROGENEITY OF La-BASED METALLIC GLASS: BASED ON THE STRESS RELAXATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2616-2624. DOI: 10.6052/0459-1879-24-077 |
[5] | Zhu Fan, Xing Guanghui, Jean-Marc Pelletier, Qiao Jichao. EFFECT OF Hf ELEMENT ADDITION ON DYNAMIC RELAXATION PROCESS OF CuZr-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2282-2293. DOI: 10.6052/0459-1879-24-049 |
[6] | Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255 |
[7] | Xu Zongrui, Hao Qi, Zhang Langting, Qiao Jichao. PROBING INTO THE CREEP MECHANISM OF AMORPHOUS ALLOY BASED ON QUASI-POINT THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1590-1600. DOI: 10.6052/0459-1879-22-059 |
[8] | Jiang Shouyan, Wan Chen, Sun Liguo, Du Chengbin. CRACK-LIKE DEFECT INVERSION MODEL BASED ON SBFEM AND DEEP LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2724-2735. DOI: 10.6052/0459-1879-21-360 |
[9] | Hao Qi, Qiao Jichao, Jean-Marc Pelletier. DYNAMIC RELAXATION CHARACTERISTICS AND HIGH TEMPERATURE FLOW BEHAVIOR OF ZR-BASED BULK METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368. DOI: 10.6052/0459-1879-20-004 |
[10] | QUASI-FLOW THEORY OF ELASTIC PLASTIC FINITE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 275-283. DOI: 10.6052/0459-1879-1994-3-1995-547 |