EI、Scopus 收录
中文核心期刊
Wang Hui, Zeng Ming, Duan Xinkui, Wang Dongfang, Liu Wei. Numerical study of high-temperature nonequilibrium air nozzle flow with state-to-state model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1377-1394. DOI: 10.6052/0459-1879-23-471
Citation: Wang Hui, Zeng Ming, Duan Xinkui, Wang Dongfang, Liu Wei. Numerical study of high-temperature nonequilibrium air nozzle flow with state-to-state model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1377-1394. DOI: 10.6052/0459-1879-23-471

NUMERICAL STUDY OF HIGH-TEMPERATURE NONEQUILIBRIUM AIR NOZZLE FLOW WITH STATE-TO-STATE MODEL

  • Received Date: October 06, 2023
  • Accepted Date: December 17, 2023
  • Available Online: December 18, 2023
  • Published Date: December 18, 2023
  • Using state-to-state model, quasi-one-dimensional nozzle flow of high-temperature nonequilibrium air is investigated numerically. The five chemical species mixture N2/O2/NO/N/O is considered with 61 bound vibrational levels for N2, 46 for O2, and 48 for NO. Each vibrational state is regarded as a pseudo species, which leads to a total of 157 species for the air mixture. The state-specific transition rate coefficients of some processes, which have no available data, are calculated based on the relaxation time and the rate coefficients of other similar processes. The flow simulation and analysis are made for reservoir temperature from 2000 to 8000 K and pressure from 1 to 20 MPa. The nozzle flow is essentially in equilibrium before the throat, but deviates from equilibrium shortly after the throat. The mass fraction of chemical species, populations of lower energy levels, and vibrational temperatures are frozen in the downstream not far away from the throat. The vibrational temperature of N2 is freezing earlier and has a higher frozen value than that of NO and O2. The process of vibration-translation (VT) energy exchange is predominant for vibrational transition, the recombination reaction generates molecules preferably to middle vibrational levels. Throughout the nonequilibrium and frozen zone, the vibrational population distributions are far from Boltzmann distribution at vibrational temperature, and feature a large overpopulation of the high-lying vibrational levels. Increasing the reservoir pressure could reduce the nonequilibrium to a certain extent and delay the flow thermochemical freezing.
  • [1]
    汪运鹏, 姜宗林. 高超声速喷管设计理论与方法. 力学进展, 2021, 51(2): 257-294 (Wang Yunpeng, Jiang Zonglin. A review of theories and methods for hypersonic nozzle design. Advances in Mechanics, 2021, 51(2): 257-294 (in Chinese) doi: 10.6052/1000-0992-20-002

    Wang Yunpeng, Jiang Zonglin. A review of theories and methods for hypersonic nozzle design. Advances in Mechanics, 2021, 51(2): 257-294 (in Chinese) doi: 10.6052/1000-0992-20-002
    [2]
    Teixeira O, Páscoa J. Catalytic wall effects for hypersonic nozzle flow in thermochemical non-equilibrium. Acta Astronautica, 2023, 203: 48-59 doi: 10.1016/j.actaastro.2022.11.031
    [3]
    Gu S, Hao J, Wang Q, et al. Influence of thermochemical nonequilibrium on expansion tube air test conditions: A numerical study. Physics of Fluids, 2023, 35(3): 036106 doi: 10.1063/5.0141281
    [4]
    Park C, Lee SH. Validation of multitemperature nozzle flow code. Journal of Thermophysics and Heat Transfer, 1995, 9(1): 9-16 doi: 10.2514/3.622
    [5]
    Capitelli M, Armenise I, Gorse C. State-to-state approach in the kinetics of air components under re-entry conditions. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 570-578 doi: 10.2514/2.6281
    [6]
    Park C. Review of chemical-kinetic problems of future nasa missions. I-earth entries. Journal of Thermophysics and Heat Transfer, 1993, 7(3): 385-398 doi: 10.2514/3.431
    [7]
    Candler GV. Rate effects in hypersonic flows. Annual Review of Fluid Mechanics, 2019, 51(1): 379-402 doi: 10.1146/annurev-fluid-010518-040258
    [8]
    Wang X, Hong Q, Hu Y, et al. On the accuracy of two-temperature models for hypersonic nonequilibrium flow. Acta Mechanica Sinica, 2022, 39(2): 122193
    [9]
    Yang X. State-to-state dynamics of elementary bimolecular reactions. Annual Review of Physical Chemistry, 2007, 58: 433-459 doi: 10.1146/annurev.physchem.58.032806.104632
    [10]
    Pan TJ, Stephani KA. Rovibrationally state-specific collision model for the O2(sigmag-3) + O(p3) system in dsmc. The Journal of Chemical Physics, 2021, 154(10): 104306 doi: 10.1063/5.0027411
    [11]
    Campoli L, Kunova O, Kustova E, et al. Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronautica, 2020, 175: 493-509 doi: 10.1016/j.actaastro.2020.06.008
    [12]
    Du Y, Sun S, Tan M, et al. Non-equilibrium simulation of energy relaxation for earth reentry utilizing a collisional-radiative model. Acta Astronautica, 2022, 193: 521-537 doi: 10.1016/j.actaastro.2022.01.034
    [13]
    Adamovich IV, Macheret SO, Rich JW, et al. Vibrational relaxation and dissociation behind shock waves part 2: Master equation modeling. AIAA Journal, 1995, 33(6): 1070-1075 doi: 10.2514/3.48339
    [14]
    Capitelli M, Armenise I, Colonna G, et al. Nonequilibrium vibrational kinetics during hypersonic flow of a solid body in nitrogen and its influence on the surface heat flux. Plasma Chemistry and Plasma Processing, 1995, 15(3): 501-528 doi: 10.1007/BF03651420
    [15]
    Armenise I, Capitelli M, Gorse C. Nitrogen nonequilibrium vibrational distributions and non-arrhenius dissociation constants in hypersonic boundary layers. Journal of Thermophysics and Heat Transfer, 1998, 12(1): 45-51 doi: 10.2514/2.6300
    [16]
    Armenise I, Capitelli M, Colonna G, et al. Nonequilibrium vibrational kinetics in the boundary layer of re-entering bodies. Journal of Thermophysics and Heat Transfer, 1996, 10(3): 397-405 doi: 10.2514/3.803
    [17]
    Colonna G, Tuttafesta M, Capitelli M, et al. No formation in one-dimensional nozzle air flow with state-to-state nonequilibrium vibrational kinetics//7th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Albuquerque, USA, 1998
    [18]
    Colonna G, Tuttafesta M, Capitelli M, et al. Non-arrhenius no formation rate in one-dimensional nozzle airflow. Journal of Thermophysics and Heat Transfer, 1999, 13(3): 372-375 doi: 10.2514/2.6448
    [19]
    Su W, Bruno D, Babou Y. State-specific modeling of vibrational relaxation and nitric oxide formation in shock-heated air. Journal of Thermophysics and Heat Transfer, 2018, 32(2): 337-352 doi: 10.2514/1.T5271
    [20]
    Gu S, Hao J, Wen C. On the vibrational state-specific modeling of radiating normal shocks in air. AIAA Journal, 2022, 60(6): 3760-3774 doi: 10.2514/1.J061438
    [21]
    Gimelshein SF, Wysong IJ, Fangman AJ, et al. Kinetic and continuum modeling of high-temperature air relaxation. Journal of Thermophysics and Heat Transfer, 2022, 36(4): 870-893 doi: 10.2514/1.T6462
    [22]
    郑伟杰. 采用态态模型的高温非平衡流场辐射特性研究. [硕士论文]. 长沙: 国防科技大学, 2019 (Zheng Weeijie. The study of radiation characteristics of thermo-chemical nonequilibrium flow field using state-to-state model. [Master Theses]. Changsha: National University of Defense Technology, 2019 (in Chinese)

    Zheng Weeijie. The study of radiation characteristics of thermo-chemical nonequilibrium flow field using state-to-state model. [Master Theses]. Changsha: National University of Defense Technology, 2019 (in Chinese)
    [23]
    洪启臻, 王小永, 孙泉华. 高温非平衡流动中的氧分子振动态精细分析. 力学学报, 2019, 51(6): 1761-1774 (Hong Qizhen, Wang Xiaoyong, Sun Quanhua. Detailed analysis of vibrational states of oxygen in high temperature non-equilibrium flows. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774 (in Chinese) doi: 10.6052/0459-1879-19-145

    Hong Qizhen, Wang Xiaoyong, Sun Quanhua. Detailed analysis of vibrational states of oxygen in high temperature non-equilibrium flows. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774 (in Chinese) doi: 10.6052/0459-1879-19-145
    [24]
    Ninni D, Bonelli F, Colonna G, et al. On the influence of non equilibrium in the free stream conditions of high enthalpy oxygen flows around a double-cone. Acta Astronautica, 2022, 201: 247-258 doi: 10.1016/j.actaastro.2022.09.017
    [25]
    Ninni D, Bonelli F, Colonna G, et al. Unsteady behavior and thermochemical non equilibrium effects in hypersonic double-wedge flows. Acta Astronautica, 2022, 191: 178-192 doi: 10.1016/j.actaastro.2021.10.040
    [26]
    Guy A, Bourdon A, Perrin MY. Consistent multi-internal-temperatures models for nonequilibrium nozzle flows. Chemical Physics, 2013, 420: 15-24 doi: 10.1016/j.chemphys.2013.04.018
    [27]
    徐丹, 曾明, 张威等. 采用态−态模型的热化学非平衡喷管流数值研究. 计算物理, 2014, 31(5): 531-538 (Xu Dan, Zeng Ming, Zhang Wei, et al. Numerical study of thermochemical nonequilibrium nozzle flow in state-to-state model. Chinese Journal of Computational Physics, 2014, 31(5): 531-538 (in Chinese) doi: 10.3969/j.issn.1001-246X.2014.05.004

    Xu Dan, Zeng Ming, Zhang Wei, et al. Numerical study of thermochemical nonequilibrium nozzle flow in state-to-state model. Chinese Journal of Computational Physics, 2014, 31(5): 531-538 (in Chinese) doi: 10.3969/j.issn.1001-246X.2014.05.004
    [28]
    Nagnibeda E, Papina K, Kunova O. State-to-state modeling of non-equilibrium air nozzle flows//The Eighth Polyakhov’S Reading: Proceedings of the International Scientific Conference on Mechanics. Saint Petersburg, Russia, 2018
    [29]
    Gu S, Hao J, Wen C. Air thermochemistry in the converging section of de laval nozzles on hypersonic wind tunnels. AIP Advances, 2022, 12(8): 085320 doi: 10.1063/5.0106554
    [30]
    Gu S, Hao J, Wen C. State-specific study of air in the expansion tunnel nozzle and test section. AIAA Journal, 2022, 60(7): 4024-4038 doi: 10.2514/1.J061479
    [31]
    Adamovich IV, Macheret SO, Rich JW, et al. Vibrational energy transfer rates using a forced harmonic oscillator model. Journal of Thermophysics and Heat Transfer, 1998, 12(1): 57-65 doi: 10.2514/2.6302
    [32]
    Silva MLD, Guerra V, Loureiro J. State-resolved dissociation rates for extremely nonequilibrium atmospheric entries. Journal of Thermophysics and Heat Transfer, 2007, 21(1): 40-49 doi: 10.2514/1.24114
    [33]
    Silva MLD, Loureiro J, Guerra V. A multiquantum dataset for vibrational excitation and dissociation in high-temperature O2–O2 collisions. Chemical Physics Letters, 2012, 531: 28-33 doi: 10.1016/j.cplett.2012.01.074
    [34]
    Silva MLD, Lopez B, Guerra V, et al. A multiquantum state-to-state model for the fundamental states of air: The stellar database//5th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Barcelona, Spain, 2012
    [35]
    Andrienko DA, Boyd ID. Vibrational energy transfer and dissociation in O2-N2 collisions at hyperthermal temperatures. The Journal of Chemical Physics, 2018, 148(8): 084309 doi: 10.1063/1.5007069
    [36]
    Li N, Zhang H, Cheng X. Quantum mechanical investigation of N + N2 collision: State-to-state non-reaction and exchange reaction probabilities and rate constants. Journal of Physics B : Atomic, Molecular and Optical Physics, 2021, 54(22): 225202
    [37]
    Dani R, Makri N. Quantum state-to-state rates for multistate processes from coherences. The Journal of Physical Chemistry Letters, 2022, 13(34): 8141-8149 doi: 10.1021/acs.jpclett.2c02286
    [38]
    Hong Q, Bartolomei M, Pirani F, et al. Vibrational deactivation in O(3P) + N2 collisions: From an old problem towards its solution. Plasma Sources Science and Technology, 2022, 31(8): 084008 doi: 10.1088/1361-6595/ac86f3
    [39]
    洪启臻. 高温热化学非平衡流动的精细模拟研究. [博士论文]. 北京: 中国科学院力学研究所, 2022 (Hong Qizhen. Study on detailed simulation of high temperature Thermochemical nonequilibrium flow. [PhD Thesis]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2022 (in Chinese)

    Hong Qizhen. Study on detailed simulation of high temperature Thermochemical nonequilibrium flow. [PhD Thesis]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2022 (in Chinese)
    [40]
    Esposito F, Armenise I, Capitta G, et al. O–O2 state-to-state vibrational relaxation and dissociation rates based on quasiclassical calculations. Chemical Physics, 2008, 351(1-3): 91-98 doi: 10.1016/j.chemphys.2008.04.004
    [41]
    Esposito F, Armenise I, Capitelli M. N–N2 state to state vibrational-relaxation and dissociation rates based on quasiclassical calculations. Chemical Physics, 2006, 331(1): 1-8 doi: 10.1016/j.chemphys.2006.09.035
    [42]
    Esposito F, Armenise I. Reactive, inelastic, and dissociation processes in collisions of atomic nitrogen with molecular oxygen. Journal of Physical Chemistry A, 2021, 125(18): 3953-3964 doi: 10.1021/acs.jpca.0c09999
    [43]
    Armenise I, Esposito F. N + O2(v) collisions: Reactive, inelastic and dissociation rates for state-to-state vibrational kinetic models. Chemical Physics, 2021, 551: 111325 doi: 10.1016/j.chemphys.2021.111325
    [44]
    Esposito F, Armenise I. Reactive, inelastic, and dissociation processes in collisions of atomic oxygen with molecular nitrogen. Journal of Physical Chemistry A, 2017, 121(33): 6211-6219 doi: 10.1021/acs.jpca.7b04442
    [45]
    Fangman AJ, Andrienko DA. Vibrational-specific model of simultaneous N2−N and N2−N2 relaxation under postshock conditions. Journal of Thermophysics and Heat Transfer, 2022, 36(3): 568-583 doi: 10.2514/1.T6441
    [46]
    Lopez B, Silva MLD. Non-boltzmann analysis of hypersonic air re-entry flows//11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Atlanta, USA, 2014
    [47]
    Adamovich IV, Macheret SO, Rich JW. Vibrational relaxation and dissociation behind shock waves. Part 1-Kinetic rate models. AIAA Journal, 1995, 33(6): 1064-1069
    [48]
    Oblapenko GP. Calculation of vibrational relaxation times using a kinetic theory approach. J Phys Chem A, 2018, 122(50): 9615-9625 doi: 10.1021/acs.jpca.8b09897
    [49]
    Anderson JD. Hypersonic and High Temperature Gas Dynamics, 2nd ed. Reston: AIAA, 2006
    [50]
    Bose D, Candler GV. Thermal rate constants of the N2 + O → NO + N reaction using ab initio 3A'' and 3A'potential energy surfaces. The Journal of Chemical Physics, 1996, 104(8): 2825-2833 doi: 10.1063/1.471106
    [51]
    Bose D, Candler GV. Thermal rate constants of the O2 + N → NO + O reaction based on the A2' and A4' potential energy surfaces. The Journal of Chemical Physics, 1997, 107: 6136-6145 doi: 10.1063/1.475132
    [52]
    Nagnibeda E, Kustova E. Non-equilibrium Reacting Gas Flows. Berlin: Springer, 2009
    [53]
    Kim JG. Expansion of the equilibrium constants for the temperature range of 300 K to 20 000 K. International Journal of Aeronautical and Space Sciences, 2016, 17(4): 455-466 doi: 10.5139/IJASS.2016.17.4.455
    [54]
    Brown PN, Byrne GD, Hindmarsh AC. Vode: A variable-coefficient ode solver. SIAM Journal on Scientific and Statistical Computing, 1989, 10(5): 1038-1051 doi: 10.1137/0910062
    [55]
    Hong QZ, Wang XY, Hu Y, et al. Development of a stagnation streamline model for thermochemical nonequilibrium flow. Physics of Fluids, 2020, 32(4): 046102
  • Related Articles

    [1]Yuan Chaokai, Jiang Zonglin. MEASUREMENT METHOD OF EMBEDDED TEMPERATURE SENSITIVE PAINT UNDER HYPERSONIC HIGH ENTHALPY CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 48-58. DOI: 10.6052/0459-1879-21-279
    [2]Liu Pengxin, Sun Dong, Li Chen, Guo Qilong, Yuan Xianxu. ANALYSES ON GENERATION MECHANISM OF SKIN FRICTION IN HIGH ENTHALPY TURBULENT BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 39-47. DOI: 10.6052/0459-1879-21-490
    [3]Hong Qizhen, Wang Xiaoyong, Sun Quanhua. DETAILED ANALYSIS OF VIBRATIONAL STATES OF OXYGEN IN HIGH TEMPERATURE NON-EQUILIBRIUM FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1761-1774. DOI: 10.6052/0459-1879-19-145
    [4]Li Kang, Hu Zongmin, Jiang Zonglin. INVESTIGATION OF RECOMPRESSION EFFECTS ON THE HIGH-ENTHALPY SPHERE-CONIC MODEL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 346-350. DOI: 10.6052/0459-1879-14-220
    [5]Chen Xiaoping, Li Xinliang, Zhong Fengquan. THE OPTIMIZED REFERENCE ENTHALPY METHOD USING IN HIGH-SPEED TURBULENT CHANNEL FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 614-618. DOI: 10.6052/0459-1879-12-308
    [6]Chen Xuedong, Wang Famin, Tang Guiming. THE INVESTIGATION OF EXPERIMENTAL TECHNIQUE FOR HIGH TEMPERATURE GAS JET FLOW TEST IN IMPULSE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 230-237. DOI: 10.6052/0459-1879-2012-2-20120205
    [7]Yunliang Gao, Wei Zhao, Zonglin Jiang. Experimental study on the performance of the detonation-driven high-enthalpy shock expansion tube[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 473-478. DOI: 10.6052/0459-1879-2008-4-2007-111
    [8]Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017
    [10]THE EXPLORATION OF REDUCING 3-D WAVE REFLECTION IN HIGH SPEED 2-D FLEXIBLE WALL ADAPTIVE WIND TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(2): 218-225. DOI: 10.6052/0459-1879-1993-2-1995-635

Catalog

    Article Metrics

    Article views (442) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return