Citation: | Zhang Shengting, Li Jing, Chen Zhangxing, Bi Ran, Qiang Zhuang, Wu Keliu, Wang Ziyi. Study on the effect of dynamic interfacial properties of liquid bridges on spontaneous liquid-liquid imbibition. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1163-1177. DOI: 10.6052/0459-1879-23-444 |
[1] |
蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese) doi: 10.6052/1000-0992-11-096
Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese) doi: 10.6052/1000-0992-11-096
|
[2] |
蔡建超. 多孔介质自发渗吸关键问题与思考. 计算物理, 2021, 38(5): 505-512 (Cai Jianchao. Some key issues and thoughts on spontaneous imbibition in porous media. Chinese Journal of Computational Physics, 2021, 38(5): 505-512 (in Chinese) doi: 10.19596/j.cnki.1001-246x.8440
Cai Jianchao. Some Key Issues and Thoughts on Spontaneous Imbibition in Porous Media. Chinese Journal of Computational Physics, 2021, 38(5): 505-512 (in Chinese) doi: 10.19596/j.cnki.1001-246x.8440
|
[3] |
Cai JC, Perfect E, Cheng CL, et al. Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir, 2014, 30(18): 5142-5151 doi: 10.1021/la5007204
|
[4] |
Tian WB, Wu KL, Gao Y, et al. A critical review of enhanced oil recovery by imbibition: theory and practice. Energy & Fuels, 2021, 35(7): 5643-5670
|
[5] |
朱维耀, 岳明, 刘昀枫等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41(9): 1103-1114 ((Zhu Weiyao, Yue Ming, Liu Yunfeng, et al. Research progress on tight oil exploration in China. Chinese Journal of Engineering, 2019, 41(9): 1103-1114 (in Chinese)
Zhu Weiyao, Yue Ming, Liu Yunfeng, et al. Research progress on tight oil exploration in China. Chinese Journal of Engineering, 2019, 41(9): 1103-1114 (in Chinese
|
[6] |
李爱芬, 何冰清, 雷启鸿等. 界面张力对低渗亲水储层自发渗吸的影响. 中国石油大学学报 (自然科学版), 2018, 42(4): 67-74 (Li Aifen, He Bingqing, Lei Qihong, et al. Influence of interfacial tension on spontaneous imbibition in low-permeability water-wet reservoirs. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(4): 67-74 (in Chinese)
Li Aifen, He Bingqing, Lei Qihong, et al. Influence of interfacial tension on spontaneous imbibition in low-permeability water-wet reservoirs. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(4): 67-74 (in Chinese)
|
[7] |
Mondal PK, DasGupta D, Chakraborty S. Interfacial dynamics of two immiscible fluids in spatially periodic porous media: The role of substrate wettability. Physical Review E, 2014, 90(1): 013003 doi: 10.1103/PhysRevE.90.013003
|
[8] |
李锡夔, 张松鸽, 楚锡华. 非饱和颗粒材料的多孔连续体有效压力与有效广义 Biot 应力. 力学学报, 2022, 55(2): 369-380 (Li Xikui, Zhang Songge, Chu Xihua. Effective pressure and generalized effective Biot stress of porous continuum in unsaturated granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 55(2): 369-380 (in Chinese) doi: 10.6052/0459-1879-21-483
Li Xikui, Zhang Songge, Chu Xihua. Effective pressure and generalized effective Biot stress of porous continuum in unsaturated granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2022, 55(2): 369-380 (in Chinese) doi: 10.6052/0459-1879-21-483
|
[9] |
Liu Y, Berg S, Ju Y, et al. Systematic investigation of corner flow impact in forced imbibition. Water Resources Research, 2022, 58(10): e2022WR032402 doi: 10.1029/2022WR032402
|
[10] |
张晟庭, 李靖, 陈掌星等. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报, 2022, 54(5): 1429-1442 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
|
[11] |
杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展. 科学通报, 2016, 61(14): 1574-1584 (Yang Min, Cao Bingyang. Advances of capillary filling of Newtonian fluids in micro- and nanochannels. Chinese Science Bulletin, 2016, 61(14): 1574-1584 (in Chinese) doi: 10.1360/N972015-00783
Yang Min, Cao Bingyang. Advances of capillary filling of Newtonian fluids in micro- and nanochannels. Chinese Science Bulletin, 2016, 61(14): 1574-1584 (in Chinese) doi: 10.1360/N972015-00783
|
[12] |
Fortes MA. Axisymmetric liquid bridges between parallel plates. Journal of Colloid and Interface Science, 1982, 88(2): 338-352 doi: 10.1016/0021-9797(82)90263-6
|
[13] |
Lian GP, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science, 1993, 161(1): 138-147 doi: 10.1006/jcis.1993.1452
|
[14] |
Salama A, Cai JC, Kou JS, et al. Investigation of the dynamics of immiscible displacement of a ganglion in capillaries. Capillarity, 2021, 4(2): 31-44 doi: 10.46690/capi.2021.02.02
|
[15] |
Lian GP, Seville J. The capillary bridge between two spheres: new closed-form equations in a two century old problem. Advances in Colloid and Interface Science, 2016, 227: 53-62 doi: 10.1016/j.cis.2015.11.003
|
[16] |
Lucas R. Rate of capillary ascension of liquids. Kolloid Z, 1918, 23(15): 15-22
|
[17] |
Washburn EW. The dynamics of capillary flow. Phys. Rev., 1921, 17(3): 273-283 doi: 10.1103/PhysRev.17.273
|
[18] |
Mumley TE, Radke CJ, Williams MC. Kinetics of liquid/liquid capillary rise: I. Experimental observations. Journal of Colloid and Interface Science, 1986, 109(2): 398-412 doi: 10.1016/0021-9797(86)90318-8
|
[19] |
Fermigier M, Jenffer P. An experimental investigation of the dynamic contact angle in liquid-liquid systems. Journal of Colloid and Interface Science, 1991, 146(1): 226-241 doi: 10.1016/0021-9797(91)90020-9
|
[20] |
Walls PLL, Dequidt G, Bird JC. Capillary displacement of viscous liquids. Langmuir, 2016, 32(13): 3186-3190 doi: 10.1021/acs.langmuir.6b00351
|
[21] |
André J, Okumura K. Capillary Replacement in a tube prefilled with a viscous fluid. Langmuir, 2020, 36(37): 10952-10959 doi: 10.1021/acs.langmuir.0c01612
|
[22] |
Krüger T, Kusumaatmaja H, Kuzmin A, et al. The lattice Boltzmann method. Springer International Publishing, 2017, 10(978-3): 4-15
|
[23] |
Moradi B, Ghasemi S, Hosseini MA, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method. Meccanica, 2021, 56(12): 2961-2977 doi: 10.1007/s11012-021-01426-z
|
[24] |
Latva-Kokko M, Rothman DH. Scaling of dynamic contact angles in a lattice-Boltzmann model. Physical Review Letters, 2007, 98(25): 254503 doi: 10.1103/PhysRevLett.98.254503
|
[25] |
张晟庭, 李靖, 陈掌星等. 基于改进 LBM 的气液自发渗吸过程中动态润湿效应模拟. 力学学报, 2023, 55(2): 355-368 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 (in Chinese)
Zhang Shengting, Li Jing, Chen Zhangxing, et al. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368 (in Chinese)
|
[26] |
Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032
|
[27] |
Chibbaro S, Biferale L, Diotallevi F, et al. Capillary filling for multicomponent fluid using the pseudo-potential lattice Boltzmann method. The European Physical Journal Special Topics, 2009, 171(1): 223-228 doi: 10.1140/epjst/e2009-01032-8
|
[28] |
Budaraju A, Phirani J, Kondaraju S, et al. Capillary displacement of viscous liquids in geometries with axial variations. Langmuir, 2016, 32(41): 10513-10521 doi: 10.1021/acs.langmuir.6b02788
|
[29] |
Qian JY, Li XJ, Wu Z, et al. A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluidics and Nanofluidics, 2019, 23: 1-30 doi: 10.1007/s10404-018-2168-8
|
[30] |
Chan WK, Yang C. Surface-tension-driven liquid–liquid displacement in a capillary. Journal of Micromechanics and Microengineering, 2005, 15(9): 1722 doi: 10.1088/0960-1317/15/9/014
|
[31] |
Hajabdollahi F, Premnath KN, Welch S WJ. Central moment lattice Boltzmann method using a pressure-based formulation for multiphase flows at high density ratios and including effects of surface tension and Marangoni stresses. Journal of Computational Physics, 2021, 425: 109893 doi: 10.1016/j.jcp.2020.109893
|
[32] |
Fei LL, Qin FF, Zhao JL, et al. Lattice Boltzmann modelling of isothermal two-component evaporation in porous media. Journal of Fluid Mechanics, 2023, 955: A18 doi: 10.1017/jfm.2022.1048
|
[33] |
Porter ML, Coon ET, Kang Q, et al. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Physical Review E, 2012, 86(3): 036701 doi: 10.1103/PhysRevE.86.036701
|
[34] |
Akai T, Bijeljic B, Blunt MJ. Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data. Advances in Water Resources, 2018, 116: 56-66 doi: 10.1016/j.advwatres.2018.03.014
|
[35] |
Li Q, Yu Y, Luo KH. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Physical Review E, 2019, 100(5): 053313 doi: 10.1103/PhysRevE.100.053313
|
[36] |
Coelho RCV, Moura CB, Teloda Gama MM, et al. Wetting boundary conditions for multicomponent pseudopotential lattice Boltzmann. International Journal for Numerical Methods in Fluids, 2021, 93(8): 2570-2580 doi: 10.1002/fld.4988
|
[37] |
Sedahmed M, Coelho RCV, Warda HA. An improved multicomponent pseudopotential lattice Boltzmann method for immiscible fluid displacement in porous media. Physics of Fluids, 2022, 34(2): 023102 doi: 10.1063/5.0080823
|
[38] |
Sedahmed M, Coelho RCV, Araújo NAM, et al. Study of fluid displacement in three-dimensional porous media with an improved multicomponent pseudopotential lattice Boltzmann method. Physics of Fluids, 2022, 34(10): 103303 doi: 10.1063/5.0107361
|
[39] |
Thamdrup LH, Persson F, Bruus H, et al. Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits. Applied Physics Letters, 2007, 91(16): 163505 doi: 10.1063/1.2801397
|
[40] |
Cox RG. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. Journal of Fluid Mechanics, 1986, 168: 169-194 doi: 10.1017/S0022112086000332
|
[41] |
Voinov OV. Hydrodynamics of wetting. Fluid Dynamics, 1976, 11(5): 714-721
|
[42] |
Primkulov BK, Chui JYY, Pahlavan AA, et al. Characterizing dissipation in fluid-fluid displacement using constant-rate spontaneous imbibition. Physical Review Letters, 2020, 125(17): 174503 doi: 10.1103/PhysRevLett.125.174503
|
[43] |
Zhou ZX, Yang ZB, Luo C, et al. Influence of inertia on liquid splitting at fracture intersections. Journal of Hydrology, 2023, 618: 129270 doi: 10.1016/j.jhydrol.2023.129270
|
[44] |
Hubao A, Yang ZB, Hu R, et al. Roles of energy dissipation and asymmetric wettability in spontaneous imbibition dynamics in a nanochannel. Journal of Colloid and Interface Science, 2022, 607: 1023-1035 doi: 10.1016/j.jcis.2021.09.051
|
[45] |
Ahadian S, Mizuseki H, Kawazoe Y. On the kinetics of the capillary imbibition of a simple fluid through a designed nanochannel using the molecular dynamics simulation approach. Journal of Colloid and Interface Science, 2010, 352(2): 566-572 doi: 10.1016/j.jcis.2010.09.011
|
[46] |
Wu PK, Nikolov AD, Wasan DT. Capillary rise: Validity of the dynamic contact angle models. Langmuir, 2017, 33(32): 7862-7872 doi: 10.1021/acs.langmuir.7b01762
|