Citation: | Chen Juhui, An Ran, Shu Lingfeng, Li Dan, Liu Xiaogang, Mao Ying, Chen Jiyuan, Gao Haoming, Lyu Wensheng, Meng Fanqi. Study on motion of multi-component ferromagnetic particles with modified magnetization model. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 740-750. DOI: 10.6052/0459-1879-23-432 |
[1] |
Saša N, Jasna R, Fatima Ž, et al. Chaotic model of brownian motion in relation to drug delivery systems using ferromagnetic particles. Mathematics, 2022, 10(24): 4791 doi: 10.3390/math10244791
|
[2] |
Ali N, Mohsen N, Mohsen MS, et al. Separation and trapping of magnetic particles by insertion of ferromagnetic wires inside a microchip: proposing a novel geometry in magnetophoresis. Journal of Magnetism and Magnetic Materials, 2022, 560: 169424 doi: 10.1016/j.jmmm.2022.169424
|
[3] |
Sharmili P, Rajesh S, Mahendran M, et al. Rheometric and stability analysis of additive infused magnetorheological fluids: A comparative study. The European Physical Journal E, 2023, 46(2): 6 doi: 10.1140/epje/s10189-023-00262-1
|
[4] |
Lampaert GS, Quinci F, Ostayen VAR. Rheological texture in a journal bearing with magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 2020, 499: 166218 doi: 10.1016/j.jmmm.2019.166218
|
[5] |
Ahmed H, Qi L, Carlos JS. Magneto-rheological fluids: tele-manipulation of ferromagnetic particles with external magnetic field for flow control and zonal isolation. Geoenergy Science and Engineering, 2023, 228: 212029 doi: 10.1016/j.geoen.2023.212029
|
[6] |
Zheng X, Xue Z, Wang Y, et al. Modeling of particle capture in high gradient magnetic separation: A review. Powder Technology, 2019, 352: 159-169 doi: 10.1016/j.powtec.2019.04.048
|
[7] |
Zheng X, Du L, Li S, et al. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid. Minerals Engineering, 2023, 202: 108279 doi: 10.1016/j.mineng.2023.108279
|
[8] |
Li L, He M, Peng K, et al. A novel magnetically oscillatory fluidized bed using micron-sized magnetic particles for continuous capture of emulsified oil droplets. Separation and Purification Technology, 2023, 312: 123424 doi: 10.1016/j.seppur.2023.123424
|
[9] |
Wang B, Tang T, Yan S, et al. Magnetic segregation behaviors of a binary mixture in fluidized beds. Powder Technology, 2022, 397: 117031 doi: 10.1016/j.powtec.2021.117031
|
[10] |
Lima AAA, Quirino JN, Cavina R, et al. Bentonite functionalized with magnetite nanoparticles synthesized from mining sludge: A new magnetic material for removing iron and manganese ions from water. Journal of Nanoparticle Research, 2023, 25(7): 155
|
[11] |
Baresel C, Schaller V, Jonasson C, et al. Functionalized magnetic particles for water treatment. Heliyon, 2019, 5(8): e02325 doi: 10.1016/j.heliyon.2019.e02325
|
[12] |
林添明, 荆国华. 磁稳流化床研究与应用进展. 化工进展, 2012, 31(9): 1885-1890 (Lin Tianming, Jing Guohua. Research and application progress of magnetically stabilized fluidized bed. Chemical Industry and Engineering Progress, 2012, 31(9): 1885-1890 (in Chinese) doi: 10.16085/j.issn.1000-6613.2012.09.002
|
[13] |
Yu D, Wang Y, Yu B, et al. Numerical simulation and application of nanomagnetic enzyme in a liquid-solid magnetic fluidized bed. Process Biochemistry, 2018, 75: 121-129 doi: 10.1016/j.procbio.2018.09.019
|
[14] |
Yu D, Ma X, Huang Y, et al. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. International Journal of Food Engineering, 2021, 18(1): 15-26
|
[15] |
李响. 外场作用下流化床中气固两相流动数值模拟. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2010 (Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
Li Xiang. Simulations of hydrodynamics of gas and particles in fluidized bed with additional extra field. [Master Thesis]. Harbin: Harbin Institute of Technology, 2010 (in Chinese)
|
[16] |
Han K, Feng YT, Owen DRJ. Three-dimensional modelling and simulation of magnetorheological fluids. International Journal for Numerical Methods in Engineering, 2010, 84(11): 1273-1302 doi: 10.1002/nme.2940
|
[17] |
Rosensweig RE. Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 1979, 204(4388): 57-60 doi: 10.1126/science.204.4388.57
|
[18] |
Pinto-Espinoza J. Dynamic behavior of ferromagnetic particles in a liquid-solid magnetically assisted fluidized bed (MAFB): Theory, experiment, and CFD-DPM simulation. [PhD Thesis]. Corvallis: Oregon State University, 2002
|
[19] |
Hao Z, Li X, Lu H, et al. Numerical simulation of particle motion in a gradient magnetically assisted fluidized bed. Powder Technol, 2010, 203(3): 555-564 doi: 10.1016/j.powtec.2010.06.022
|
[20] |
Ke C, Shu S, Zhang H, et al. LBM-IBM-DEM modelling of magnetic particles in a fluid. Powder Technology, 2017, 314: 264-280 doi: 10.1016/j.powtec.2016.08.008
|
[21] |
Fan G, Song Y, Xia M, et al. Photocatalytic inactivation of algae in a fluidized bed photoreactor with an external magnetic field. Journal of Environmental Management, 2022, 307: 114552 doi: 10.1016/j.jenvman.2022.114552
|
[22] |
Hao W, Zhu Q. Operating range of magnetic stabilization flow regime for magnetized fluidized bed with geldart-b magnetizable and nonmagnetizable particles. Particuology, 2022, 60: 90-98 doi: 10.1016/j.partic.2021.02.004
|
[23] |
Valverde JM, Castellanos A. Magnetic field assisted fluidization: a modified richardson-zaki equation. China Particuology, 2007, 5(1-2): 61-70 doi: 10.1016/j.cpart.2007.01.001
|
[24] |
Zhu Q, Zhang Q, Yang P, et al. Measuring segregation in fluidized bed with magnetizable and nonmagnetizable particles based on magnetic permeability. Fuel, 2023, 340: 127554 doi: 10.1016/j.fuel.2023.127554
|
[25] |
杨慧, 万东玉, 曹长青. 磁−流场耦合气-固流化床气含率的模拟. 石油化工, 2014, 43(1): 51-55 (Yang Hui, Wan Dongyu, Cao Changqing. Simulation of gas holdup in a gas-solid fluidized bed with magnetic and fluid fields. Petrochemical Technology, 2014, 43(1): 51-55 (in Chinese)
|
[26] |
刘金平. 微小磁流化床内纳米颗粒流动特性的数值模拟研究. [硕士论文]. 青岛: 青岛科技大学, 2014 (Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)
Liu Jinping. Numerical simulation of fluidization characteristics of nanoparticles in micro-scale magnetic fluidized beds. [Master Thesis]. Qingdao: Qingdao University of Science and Technology, 2014 (in Chinese)
|
[27] |
Chen H, Liu Y, Liu B, et al. CPFD simulation of multicomponent bed material diffusion in dense phase zone of bubbling bed. Journal of North China Electric Power University, 2021, 48(1): 114-120
|
[28] |
Song X, Wang Q, Yang X, et al. Mass transfer simulation of multi-component particles in a fluidized bed. Journal of Chinese Society of Power Engineering, 2021, 41(1): 1-7
|
[29] |
Ganzha VL, Saxena SC. Hydrodynamic behavior of magnetically stabilized fluidized beds of magnetic particles. Powder Technology, 2000, 107(1): 31-35
|
[30] |
Jovanovic GN, Somchamni T, Atwater JE, et al. Magnetically assisted liquid–solid fluidization in normal and microgravity conditions: experiment and theory. Powder Technology, 2004, 148(2-3): 80-91 doi: 10.1016/j.powtec.2004.09.028
|
[31] |
Johnson KL. Contact Mechanics. Cambridge: Cambridge University Press, 1987
|
[32] |
Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 1953, 20(3): 327-344 doi: 10.1115/1.4010702
|
1. |
陈巨辉,安然,李丹,高浩铭,张坤. 范德华力对磁场流化纳米颗粒运动的影响. 化工学报. 2024(10): 3518-3527 .
![]() |