Citation: | Xu Shaofeng, Xu Yu, Ding Ke, Huang Xiaojiang, Tang Xiaoliang, Yang Qinyu, Yang Wei, Peng Shi, Wang Chaoliang, Chang Xijiang, Lu Hongwei, Shi Yuncheng, Guo Ying, Du Chengran, Shi Jianjun, Zhong Fangchuan, Xu Jinzhou, Zhang Jing. Interaction of multi-field coupled low temperature plasma with micro and nano structured materials. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2955-2980. DOI: 10.6052/0459-1879-23-390 |
[1] |
Liu G, Yu JC, Lu GQM, et al. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chemical Communications, 2011, 47(24): 6763-6783 doi: 10.1039/c1cc10665a
|
[2] |
O'Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740 doi: 10.1038/353737a0
|
[3] |
Starostin SA, Premkumar PA, Creatore M, et al. High current diffuse dielectric barrier discharge in atmospheric pressure air for the deposition of thin silica-like films. Applied Physics Letters, 2010, 96(6): 061502 doi: 10.1063/1.3310024
|
[4] |
Piferi C, Bazaka K, D'Aversa DL, et al. Hydrophilicity and hydrophobicity control of plasma-treated surfaces via fractal parameters. Advanced Materials Interfaces, 2021, 8(19): 2100724 doi: 10.1002/admi.202100724
|
[5] |
Elam FM, Starostin SA, Meshkova AS, et al. Atmospheric pressure roll-to-roll plasma enhanced CVD of high quality silica-like bilayer encapsulation films. Plasma Processes and Polymers, 2017, 14(7): 1600143 doi: 10.1002/ppap.201600143
|
[6] |
Ostrikov K, Murphy AB. Plasma-aided nanofabrication: where is the cutting edge? Journal of Physics D : Applied Physics, 2007, 40(8): 2223-2241
|
[7] |
Zheng J, Yang R, Xie L, et al. Plasma-assisted approaches in inorganic nanostructure fabrication. Advanced Materials, 2010, 22(13): 1451-1473 doi: 10.1002/adma.200903147
|
[8] |
Meyyappan M. Plasma nanotechnology: past, present and future. Journal of Physics D: Applied Physics, 2011, 44(17): 174002 doi: 10.1088/0022-3727/44/17/174002
|
[9] |
Bower C, Zhu W, Jin S, et al. Plasma-induced alignment of carbon nanotubes. Applied Physics Letters, 2000, 77(6): 830-832 doi: 10.1063/1.1306658
|
[10] |
Tsakadze ZL, Levchenko I, Ostrikov K, et al. Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon, 2007, 45(10): 2022-2030 doi: 10.1016/j.carbon.2007.05.030
|
[11] |
Zhang J, Guo Y, Xu JZ, et al. Single-crystalline polytetrafluoroethylene-like nanotubes prepared from atmospheric plasma discharge. Applied Physics Letters, 2005, 86(13): 131501 doi: 10.1063/1.1894598
|
[12] |
Shaygani A, Adamiak K. Numerical approaches in simulating Trichel pulse characteristics in point-plane configuration. Journal of Physics D: Applied Physics, 2023, 56(38): 385202 doi: 10.1088/1361-6463/acdd0f
|
[13] |
Tong L, Zhao ML, Zhang YR, et al. Investigation of the dual-frequency bias effect on inductively coupled Cl2 plasmas by hybrid simulation. Journal of Physics D: Applied Physics, 2023, 56: 365202 doi: 10.1088/1361-6463/acdaa7
|
[14] |
Zhao L, Liu W, Xu M, et al. Study on atmospheric air glow discharge plasma generation based on multiple potentials and aramid fabric surface modification. Plasma Processes and Polymers, 2019, 16(12): 1900114 doi: 10.1002/ppap.201900114
|
[15] |
Qin X, Liu J, Zhang Q, et al. Synthesis of yellow-fluorescent carbon nano-dots by microplasma for imaging and photocatalytic inactivation of cancer cells. Nanoscale Research Letters, 2021, 16(1): 14 doi: 10.1186/s11671-021-03478-2
|
[16] |
Leblanc A, Ding K, Lieberman MA, et al. Hybrid model of atmospheric pressure Ar/O2/TiCl4 radio-frequency capacitive discharge for TiO2 deposition. Journal of Applied Physics, 2014, 115(18): 183302 doi: 10.1063/1.4876062
|
[17] |
Lieberman M, Lichtenberg AJ. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons, Inc., 2005
|
[18] |
Park G, Hong Y, Lee H, et al. A global model for the identification of the dominant reactions for atomic oxygen in He/O2 atmospheric-pressure plasmas. Plasma Processes and Polymers, 2010, 7: 281-287 doi: 10.1002/ppap.200900084
|
[19] |
Xu Y, Zhang Y, He T, et al. The effects of thermal and atmospheric pressure radio frequency plasma annealing in the crystallization of TiO2 thin films. Coatings, 2019, 9: 357 doi: 10.3390/coatings9060357
|
[20] |
Zhang J, Guo Y, Huang X, et al. Operation mode on pulse modulation in atmospheric radio frequency glow discharges. Plasma Science and Technology, 2016, 18(10): 974-977 doi: 10.1088/1009-0630/18/10/02
|
[21] |
Shi JJ, Zhang J, Qiu G, et al. Modes in a pulse-modulated radio-frequency dielectric-barrier glow discharge. Applied Physics Letters, 2008, 93(4): 041502 doi: 10.1063/1.2965453
|
[22] |
Balcon N, Aanesland A, Boswell R. Pulsed rf discharges, glow and filamentary mode at atmospheric pressure in argon. Plasma Sources Science & Technology, 2007, 16(2): 217-225
|
[23] |
Shi JJ, Kong MG. Mode transition in radio-frequency atmospheric argon discharges with and without dielectric barriers. Applied Physics Letters, 2007, 90(10): 101502 doi: 10.1063/1.2711413
|
[24] |
Shi JJ, Cai Y, Zhang J, et al. Discharge ignition characteristics of pulsed radio-frequency glow discharges in atmospheric helium. Physics of Plasmas, 2009, 16(7): 070702 doi: 10.1063/1.3184824
|
[25] |
Han QH, Guo Y, Zhang YR, et al. Electron dissipation after radio-frequency discharge burst at atmospheric pressure. AIP Advances, 2021, 11(2): 025021 doi: 10.1063/5.0038776
|
[26] |
Xu SF, Gu LL, Fang J, et al. Mass transfer of the multicomponent free jet and one numerical implementation on a graphic processing unit platform. Physics of Fluids, 2023, 35(7): 074119 doi: 10.1063/5.0159124
|
[27] |
Zhang QZ, Zhao SX, Jiang W, et al. Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas. Journal of Physics D: Applied Physics, 2012, 45(30): 305203 doi: 10.1088/0022-3727/45/30/305203
|
[28] |
Liu Y, Booth JP, Chabert P. Plasma non-uniformity in a symmetric radiofrequency capacitively-coupled reactor with dielectric side-wall: a two dimensional particle-in-cell/Monte Carlo collision simulation. Plasma Sources Science & Technology, 2018, 27(2): 025006
|
[29] |
Liu Y, Booth JP, Chabert P. Effect of frequency on the uniformity of symmetrical RF CCP discharges. Plasma Sources Science & Technology, 2018, 27(5): 055012
|
[30] |
Zhao YF, Zhou Y, Ma XP, et al. Axial diagnosis of electron and negative ion behaviors in capacitively coupled O2-containing Ar plasma driven by 27.12 MHz. Physics of Plasmas, 2019, 26(3): 033502 doi: 10.1063/1.5079256
|
[31] |
Liang YS, Liu YX, Zhang YR, et al. Fluid simulation and experimental validation of plasma radial uniformity in 60 MHz capacitively coupled nitrogen discharges. Journal of Applied Physics, 2015, 117(8): 083301 doi: 10.1063/1.4913221
|
[32] |
Liu GH, Liu YX, Bai LS, et al. Experimental investigation of mode transitions in asymmetric capacitively coupled radio-frequency Ne and CF4 plasmas. Physics of Plasmas, 2018, 25(2): 023515 doi: 10.1063/1.5000950
|
[33] |
Liu GH, Wang XY, Liu YX, et al. Effects of secondary electron emission on plasma density and electron excitation dynamics in dual-frequency asymmetric capacitively coupled argon plasmas. Plasma Sources Science & Technology, 2018, 27(6): 064004
|
[34] |
Schulze J, Schungel E, Donko Z, et al. Phase resolved optical emission spectroscopy: a non-intrusive diagnostic to study electron dynamics in capacitive radio frequency discharges. Journal of Physics D: Applied Physics, 2010, 43(12): 124016 doi: 10.1088/0022-3727/43/12/124016
|
[35] |
Zhu LG, Chen WC, Zhu XM, et al. Chromatic-free spatially resolved optical emission spectroscopy diagnostics for microplasma. Review of Scientific Instruments, 2009, 80(2): 023105 doi: 10.1063/1.3079379
|
[36] |
Park S, Choe W, Moon SY, et al. Spatio-temporally resolved electron temperature in argon radio-frequency capacitive discharge at atmospheric pressure. Plasma Sources Science & Technology, 2015, 24(3): 032006
|
[37] |
Palmero A, van Hattum ED, Rudolph H, et al. Characterization of a low-pressure argon plasma using optical emission spectroscopy and a global model. Journal of Applied Physics, 2007, 101(5): 053306 doi: 10.1063/1.2559790
|
[38] |
Vlček J. A collisional-radiative model applicable to argon discharges over a wide range of conditions: formulation and basic Data. Journal of Physics D: Applied Physics, 2000, 22: 623
|
[39] |
Zhu XM, Pu YK. A simple collisional-radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1s and 2p levels. Journal of Physics D: Applied Physics, 2010, 43(1): 015204 doi: 10.1088/0022-3727/43/1/015204
|
[40] |
Bogaerts A, Gijbels R, Vlcek J. Collisional-radiative model for an argon glow discharge. Journal of Applied Physics, 1998, 84(1): 121-136 doi: 10.1063/1.368009
|
[41] |
Yanguas-Gil A, Cotrino J, Gonzalez-Elipe AR. Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure: A critical approach. Journal of Applied Physics, 2006, 99(3): 033104 doi: 10.1063/1.2170416
|
[42] |
Kastner SO, Bhatia AK. Half-widths, escape probabilities and intensity factors of opacity-broadened Doppler- and Voigt-profile lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 58(2): 217-231 doi: 10.1016/S0022-4073(97)00019-8
|
[43] |
Gudmundsson JT, Thorsteinsson EG. Oxygen discharges diluted with argon: dissociation processes. Plasma Sources Science & Technology, 2007, 16(2): 399-412
|
[44] |
Wu JD, Zheng H, Wang YF, et al. Experimental diagnosis of electron density and temperature in capacitively coupled argon plasmas: Triple-frequency discharges and two-dimensional spatial distributions. Physics of Plasmas, 2021, 28(9): 093501 doi: 10.1063/5.0044844
|
[45] |
Wu JD, Xiao XJ, Wang YF, et al. Electron density and temperature of dual-frequency capacitively coupled argon plasma in two-dimensional distribution obtained and studied in experiment. Journal of Vacuum Science & Technology B, 2022, 40(5): 052203
|
[46] |
Graves DB. Plasma processing. IEEE Transactions on Plasma Science, 1994, 22(1): 31-42 doi: 10.1109/27.281547
|
[47] |
Ventzek PLG, Hoekstra RJ, Kushner MJ. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing. Journal of Vacuum Science & Technology B, 1994, 12(1): 461-477
|
[48] |
Gu S, Kang HJ, Kwon DC, et al. Experimental observation of electron bounce resonance through electron energy distribution measurement in a finite size inductively coupled plasma. Physics of Plasmas, 2016, 23(6): 063506 doi: 10.1063/1.4952634
|
[49] |
Chung CW, You KI, Seo SH, et al. The electron bounce resonance in a low-pressure solenoidal inductive discharge. Physics of Plasmas, 2001, 8(6): 2992-2997 doi: 10.1063/1.1364673
|
[50] |
Yang W, Gao F, Wang YN. Effects of chamber size on electron bounce-resonance heating and power deposition profile in a finite inductive discharge. Physics of Plasmas, 2022, 29(6): 063503 doi: 10.1063/5.0090806
|
[51] |
Godyak VA, Kolobov VI. Negative power absorption in inductively coupled plasma. Physical Review Letters, 1997, 79(23): 4589-4592 doi: 10.1103/PhysRevLett.79.4589
|
[52] |
Ding ZF, Sun B, Huo WG. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma. Physics of Plasmas, 2015, 22(6): 063504 doi: 10.1063/1.4922080
|
[53] |
Yang W, Wang YN. Hybrid model of radio-frequency low-pressure inductively coupled plasma discharge with self-consistent electron energy distribution and 2D electric field distribution. Plasma Physics and Controlled Fusion, 2021, 63(3): 035031 doi: 10.1088/1361-6587/abd9e2
|
[54] |
Yang W, Gao F, Wang YN. Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas. Plasma Science and Technology, 2022, 24(5): 055401 doi: 10.1088/2058-6272/ac56ce
|
[55] |
Zhu MY, Wang JJ, Outlaw RA, et al. Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond and Related Materials, 2007, 16(2): 196-201 doi: 10.1016/j.diamond.2006.05.007
|
[56] |
Chang XH, Xie ZW, Liu ZL, et al. Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Storage Materials, 2020, 25: 93-99 doi: 10.1016/j.ensm.2019.10.027
|
[57] |
Ma TP, Jiang HD, Liu JQ, et al. Decomposition of benzene using a pulse-modulated DBD plasma. Plasma Chemistry and Plasma Processing, 2016, 36(6): 1533-1543 doi: 10.1007/s11090-016-9736-z
|
[58] |
Holzer F, Roland U, Kopinke FD. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume. Applied Catalysis B: Environmental, 2002, 38(3): 163-181 doi: 10.1016/S0926-3373(02)00040-1
|
[59] |
Ouyang JM, Shao FQ, Zoo DB. Numerical simulation of negative oxygen ion generation and temporal evolution in atmospheric plasma. Acta Physica Sinica, 2011, 60(11): 110209 doi: 10.7498/aps.60.110209
|
[60] |
Kim HH, Oh SM, Ogata A, et al. Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 2005, 56(3): 213-220 doi: 10.1016/j.apcatb.2004.09.008
|
[61] |
Xu SF, Zhong XX, Guo Y, et al. Effects of gas-liquid interface on the theoretical X-ray absorption spectroscopy of phenylenediamines. Applied Surface Science, 2023, 618: 156675 doi: 10.1016/j.apsusc.2023.156675
|
[62] |
Xu SF, Lukes P. Gas-liquid interface influencing electronic structure of phenol based on molecular dynamics simulations and theoretical X-ray absorption spectroscopy. Journal of Molecular Liquids, 2021, 341: 117378 doi: 10.1016/j.molliq.2021.117378
|
[63] |
Zhou RW, Zhou RS, Wang PY, et al. Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics, 2020, 53(30): 303001 doi: 10.1088/1361-6463/ab81cf
|
[64] |
Xu SF, Jirasek V, Lukes P. Molecular dynamics simulations of singlet oxygen atoms reactions with water leading to hydrogen peroxide. Journal of Physics D: Applied Physics, 2020, 53(27): 275204 doi: 10.1088/1361-6463/ab8321
|
[65] |
Xu SF, Jirasek V, Lukes P. Elucidation of molecular-level Mechanisms of oxygen atom reactions with chlorine ion in NaCl solutions using molecular dynamics simulations combined with density functional theory. Chemistry Select, 2023, 8(23): e202203937 doi: 10.1002/slct.202203937
|
[66] |
Xu SF, Guo XY, Wang J, et al. Chemical scanning of atomic oxygen at the gas-liquid interface of a NaCl solution via quantum mechanics/molecular mechanics molecular dynamics simulations. Science of the Total Environment, 2023, 896: 165329 doi: 10.1016/j.scitotenv.2023.165329
|
[67] |
Xu SF, Zhong XX, Guo Y, et al. Hydroxyl-initiated oxidation processes of phenylenediamines treated by the atmospheric plasma: A theoretical study in gas phase. International Journal of Quantum Chemistry, 2023, 123(11): e27099 doi: 10.1002/qua.27099
|
[68] |
Bouchoule A. Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing. Wiley, 1999
|
[69] |
Wu MS, Xu Y, Dai LJ, et al. The gas nucleation process study of anatase TiO2 in atmospheric non-thermal plasma enhanced chemical vapor deposition. Plasma Science and Technology, 2013, 16: 32
|
[70] |
Schwabe M, Rubin-Zuzic M, Zhdanov S, et al. Highly resolved self-excited density waves in a complex plasma. Physical Review Letters, 2007, 99(9): 095002 doi: 10.1103/PhysRevLett.99.095002
|
[71] |
Merlino RL. 25 years of dust acoustic waves. Journal of Plasma Physics, 2014, 80: 773-786 doi: 10.1017/S0022377814000312
|
[72] |
Du CR, Thomas HM, Ivlev AV, et al. Agglomeration of microparticles in complex plasmas. Physics of Plasmas, 2010, 17(11): 113710
|
[73] |
Dap S, Lacroix D, Hugon R, et al. Cluster agglomeration induced by dust-density waves in complex plasmas. Physical Review Letters, 2012, 109(24): 245002 doi: 10.1103/PhysRevLett.109.245002
|
[74] |
Fortov VE, Ivlev AV, Khrapak SA, et al. Complex (dusty) plasmas: Current status, open issues, perspectives. Physics Reports-Review Section of Physics Letters, 2005, 421(1-2): 1-103
|
[75] |
Morfill GE, Ivlev AV. Complex plasmas: An interdisciplinary research field. Reviews of Modern Physics, 2009, 81(4): 1353-1404 doi: 10.1103/RevModPhys.81.1353
|
[76] |
Ivlev A, Löwen H, Morfill G, et al. Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids. World Scientific Publishing Company, 2012
|
[77] |
Allen JE. Probe theory-the orbital motion approach. Physica Scripta, 1992, 45(5): 497 doi: 10.1088/0031-8949/45/5/013
|
[78] |
Du CR, Khrapak S, Antonova T, et al. Frequency dependence of microparticle charge in a radio frequency discharge with Margenau electron velocity distribution. Physics of Plasmas, 2011, 18: 014501 doi: 10.1063/1.3530439
|
[79] |
Melzer A. Physics of Dusty Plasmas. Springer, 2019
|
[80] |
Kompaneets R, Morfill GE, Ivlev AV. Interparticle attraction in 2D complex plasmas. Physical Review Letters, 2016, 116(12): 125001 doi: 10.1103/PhysRevLett.116.125001
|
[81] |
Zhdanov SK, Ivlev AV, Morfill GE. Mode-coupling instability of two-dimensional plasma crystals. Physics of Plasmas, 2009, 16(8): 083706 doi: 10.1063/1.3205894
|
[82] |
Ivlev AV, Bartnick J, Heinen M, et al. Statistical mechanics where newton's third law is broken. Physical Review X, 2015, 5(1): 011035 doi: 10.1103/PhysRevX.5.011035
|
[83] |
Fruchart M, Hanai R, Littlewood PB, et al. Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363-369 doi: 10.1038/s41586-021-03375-9
|
[84] |
Khrapak S, Ivlev AV, Morfill G, et al. Ion drag force in complex plasmas. Physical Review E, 2002, 66: 046414 doi: 10.1103/PhysRevE.66.046414
|
[85] |
Rothermel H, Hagl T, Morfill GE, et al. Gravity compensation in complex plasmas by application of a temperature gradient. Physical Review Letters, 2002, 89(17): 175001 doi: 10.1103/PhysRevLett.89.175001
|
[86] |
Du CR, Nosenko V, Thomas HM, et al. Photophoretic force on microparticles in complex plasmas. New Journal of Physics, 2017, 19: 073015 doi: 10.1088/1367-2630/aa724f
|
[87] |
Thomas HM, Morfill GE. Melting dynamics of a plasma crystal. Nature, 1996, 379(6568): 806-809 doi: 10.1038/379806a0
|
[88] |
Lin I, Juan WT, Chiang CH, et al. Microscopic particle motions in strongly coupled dusty plasmas. Science, 1996, 272(5268): 1626-1628 doi: 10.1126/science.272.5268.1626
|
[89] |
Khrapak SA, Klumov BA, Huber P, et al. Freezing and melting of 3D complex plasma structures under microgravity conditions driven by neutral gas pressure manipulation. Physical Review Letters, 2011, 106(20): 205001 doi: 10.1103/PhysRevLett.106.205001
|
[90] |
Zuzic M, Ivlev AV, Goree J, et al. Three-dimensional strongly coupled plasma crystal under gravity conditions. Physical Review Letters, 2000, 85(19): 4064-4067 doi: 10.1103/PhysRevLett.85.4064
|
[91] |
Schwabe M, Du CR, Huber P, et al. Latest results on complex plasmas with the PK-3 plus laboratory on board the international Space Station. Microgravity Science and Technology, 2018, 30(5): 581-589 doi: 10.1007/s12217-018-9602-0
|
[92] |
杜诚然, 冯岩, 王晓钢. 空间站微重力复杂(尘埃)等离子体实验研究进展. 载人航天, 2022, 28(3): 323-329 (Du Chengran, Feng Yan, Wang Xiaogang. Development of complex (dusty) plasma experiments under microgravity on space station. Manned Spaceflight, 2022, 28(3): 323-329 (in Chinese)
|
[93] |
杜诚然, 李阳芳. 微重力环境下的复杂等离子体实验. 现代物理知识, 2013, 25(3): 33-39, 21 (Du Chengran, Li Yangfang. Complex plasma experiments in microgravity. Modern Physics, 2013, 25(3): 33-39, 21 (in Chinese) doi: 10.13405/j.cnki.xdwz.2013.03.019
|
[94] |
Thomas HM, Schwabe M, Pustylnik MY, et al. Complex plasma research on the International Space Station. Plasma Physics and Controlled Fusion, 2019, 61(1): 014004 doi: 10.1088/1361-6587/aae468
|
[95] |
Huang H, Nosenko V, Huang Fu HX, et al. Machine learning in the study of phase transition of two-dimensional complex plasmas. Physics of Plasmas, 2022, 29(7): 073702 doi: 10.1063/5.0096938
|
[96] |
Anirudh R, Archibald R, Salman Asif M, et al. 2022 review of data-driven plasma science. arXiv: 2205.15832, 2022
|
[97] |
Li HS, Huang H, Yang W, et al. Identification of the melting line in the two-dimensional complex plasmas using an unsupervised machine learning method. 2023: arXiv: 2307.12687, 2023
|
[98] |
Knapek CA, Samsonov D, Zhdanov S, et al. Recrystallization of a 2D plasma crystal. Physical Review Letters, 2007, 98: 015004 doi: 10.1103/PhysRevLett.98.015004
|
[99] |
Feng Y, Goree J, Liu B. Evolution of shear-induced melting in a dusty plasma. Physical Review Letters, 2010, 104(16): 165003 doi: 10.1103/PhysRevLett.104.165003
|
[100] |
Nosenko V, Zhdanov S, Morfill G. Supersonic dislocations observed in a plasma crystal. Physical Review Letters, 2007, 99(2): 025002 doi: 10.1103/PhysRevLett.99.025002
|
[101] |
Du CR, Nosenko V, Zhdanov S, et al. Interaction of two-dimensional plasma crystals with upstream charged particles. EPL, 2012, 99(5): 55001 doi: 10.1209/0295-5075/99/55001
|
[102] |
Couëdel L, Nosenko V, Ivlev AV, et al. Direct observation of mode-coupling instability in two-dimensional plasma crystals. Physical Review Letters, 2010, 104(19): 195001 doi: 10.1103/PhysRevLett.104.195001
|
[103] |
Liu B, Goree J, Feng Y. Mode coupling for phonons in a single-layer dusty plasma crystal. Physical Review Letters, 2010, 105(8): 085004 doi: 10.1103/PhysRevLett.105.085004
|
[104] |
Zampetaki AV, Huang H, Du CR, et al. Buckling of two-dimensional plasma crystals with nonreciprocal interactions. Physical Review E, 2020, 102(4): 043204 doi: 10.1103/PhysRevE.102.043204
|
[105] |
Singh S, Bandyopadhyay P, Kumar K, et al. Square lattice formation in a monodisperse complex plasma. Physical Review Letters, 2022, 129(11): 115003 doi: 10.1103/PhysRevLett.129.115003
|
[106] |
Du CR, Nosenko V, Zhdanov S, et al. Channeling of particles and associated anomalous transport in a two-dimensional complex plasma crystal. Physical Review E, 2014, 89(2): 021101 doi: 10.1103/PhysRevE.89.021101
|
[107] |
Lin YF, Ivlev A, Lowen H, et al. Structure and dynamics of a glass-forming binary complex plasma with non-reciprocal interaction. EPL, 2018, 123(3): 35001 doi: 10.1209/0295-5075/123/35001
|
[108] |
Jiang K, Du CR. Dynamics in binary complex (dusty) plasmas. Reviews of Modern Plasma Physics, 2022, 6: 23 doi: 10.1007/s41614-022-00083-3
|
[109] |
Du CR, Nosenko V, Thomas HM, et al. Slow dynamics in a quasi-two-dimensional binary complex plasma. Physical Review Letters, 2019, 123(18): 185002 doi: 10.1103/PhysRevLett.123.185002
|
[110] |
Huang H, Ivlev AV, Nosenko V, et al. Wave spectra of square-lattice domains in a quasi-two-dimensional binary complex plasma. Physics of Plasmas, 2019, 26(1): 013702 doi: 10.1063/1.5079289
|
[111] |
Fu ZC, Zampetaki A, Huang H, et al. Dispersion relation of square lattice waves in a two-dimensional binary complex plasma. Physics of Plasmas, 2021, 28(1): 014502 doi: 10.1063/5.0026106
|
[112] |
Huang H, Ivlev AV, Nosenko V, et al. Dissipative solitary waves in a two-dimensional complex plasma: Amorphous versus crystalline. Physical Review E, 2023, 107(4): 045205 doi: 10.1103/PhysRevE.107.045205
|
[113] |
Chaubey N, Goree J, Lanham SJ, et al. Positive charging of grains in an afterglow plasma is enhanced by ions drifting in an electric field. Physics of Plasmas, 2021, 28(10): 103702 doi: 10.1063/5.0069141
|
[114] |
Chaubey N, Goree J. Preservation of a dust crystal as it falls in an afterglow plasma. Frontiers in Physics, 2022, 10: 879092 doi: 10.3389/fphy.2022.879092
|
[115] |
Xu Y, Khrapak SA, Ding K, et al. Particle dynamics in deposition of porous films with a pulsed radio-frequency atmospheric pressure glow discharge. arXiv: 1903.09379, 2019
|
[116] |
Zhang Y, Wang HZ, He T, et al. The effects of radio frequency atmospheric pressure plasma and thermal treatment on the hydrogenation of TiO2 thin film. Plasma Science & Technology, 2023, 25(6): 065504
|
[117] |
Yang QY, Wang DX, Guo Y, et al. Photoluminescent Si/SiOx nanoparticle network by near atmospheric plasma-enhanced chemical vapour deposition. Journal of Physics D: Applied Physics, 2011, 44(44): 445201 doi: 10.1088/0022-3727/44/44/445201
|