Citation: | Zhang Yu, Li Shaohua, Ren Jianying. Parameter freezing precise exponential integrator and its application in nonlinear vehicle-bridge coupled vibration. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 258-272. DOI: 10.6052/0459-1879-23-376 |
[1] |
Zhu XQ, Law SS. Recent developments in inverse problems of vehicle-bridge interaction dynamics. Journal of Civil Structural Health Monitoring, 2016, 6(1): 107-128 doi: 10.1007/s13349-016-0155-x
|
[2] |
Yang YB, Yang JP. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. International Journal of Structural Stability and Dynamics, 2018, 18(2): 1850025 doi: 10.1142/S0219455418500256
|
[3] |
李小珍, 辛莉峰, 王铭等. 车−桥耦合振动2019年度研究进展. 土木与环境工程学报(中英文), 2020, 42(5): 126-138 (Li Xiaozhen, Xin Lifeng, Wang Ming, et al. State-of-the-art review of vehicle-bridge interactions in 2019. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138 (in Chinese)
Li Xiaozhen, Xin Lifeng, Wang Ming, et al. State-of-the-art review of vehicle-bridge interactions in 2019. Journal of Civil and Environmental Engineering, 2020, 42(5): 126-138 (in Chinese)
|
[4] |
周勇军, 薛宇欣, 李冉冉等. 桥梁冲击系数理论研究和应用进展. 中国公路学报, 2021, 35(4): 31-50 (Zhou Yongjun, Xue Yuxin, Li Ranran et al. State-of-the-art of theory and applications of bridge dynamic load allowance. China Journal of Highway and Transport, 2021, 35(4): 31-50 (in Chinese)
|
[5] |
杨永斌, 王志鲁, 史康等. 基于车辆响应的桥梁间接测量与检测研究综述. 中国公路学报, 2021, 34(4): 1-12 (Yang Yongbin, Wang Zhilu, Shi Kang, et al. Research progress on bridge indirect measurement and monitoring from moving vehicle response. China Journal of Highway and Transport, 2021, 34(4): 1-12 (in Chinese)
|
[6] |
Han WS, Liu XD, Guo XL, et al. Research status and prospect of wind-vehicle-bridge coupling vibration system. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 319-338 doi: 10.1016/j.jtte.2021.05.002
|
[7] |
Fryba L. Vibration of Solids and Structures under Moving Loads. London: Thomas Telford, 1999
|
[8] |
Yang YB, Yau JD, Hsu LC. Vibration of simple beams due to trains moving at high speeds. Engineering Structures, 1997, 19(11): 936-944 doi: 10.1016/S0141-0296(97)00001-1
|
[9] |
夏禾, 张楠, 郭薇薇等. 车桥耦合振动工程. 北京: 科学出版社, 2014 (Xia He, Zhang Nan, Guo Weiwei, et al. Coupling Vibrations of Train-bridge System. Beijing: China Science Publishing and Media Ltd., 2014 (in Chinese)
Xia He, Zhang Nan, Guo Weiwei, et al. Coupling Vibrations of Train-bridge System. Beijing: China Science Publishing and Media Ltd., 2014 (in Chinese)
|
[10] |
张宇, 王嘉伟, 李韶华等. 基于智能驾驶电动汽车的多车−桥梁耦合系统动力学特性研究. 力学学报, 2022, 54(9): 1-13 (Zhang Yu, Wang Jiawei, Li Shaohua, et al. Dynamic characteristics of multi-vehicle-bridge coupling system based on intelligent driving electric vehicle. China Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-13 (in Chinese)
|
[11] |
Ren JY, Chen YH, Sun ZQ, et al. A vehicle-bridge interaction vibration model considering bridge deck pavement. Journal of Low Frequency Noise, Vibration and Active Control, 2022, in press. doi: 10.1177/14613484221122736
|
[12] |
Camara A, Kavrakov I, Nguyen K, et al. Complete framework of wind-vehicle-bridge interaction with random road surfaces. Journal of Sound and Vibration, 2019, 458: 197-217 doi: 10.1016/j.jsv.2019.06.020
|
[13] |
殷新锋, 晏万里, 仁厚乾等. 车载作用下公路桥梁耦合振动精细化建模及验证分析. 湖南大学学报, 2021, 48(9): 129-137 (Yin Xinfeng, Yan Wanli, Ren Houqian, et al. Fine modeling of coupled vibration of highway bridge under vehicle loading and verification analysis. Journal of Hunan University, 2021, 48(9): 129-137 (in Chinese)
|
[14] |
冯东明, 黎剑安, 吴刚等. 考虑路面不平度的车桥耦合系统快速建模与动力分析方法. 东南大学学报, 2022, 52(6): 1088-1094 (Feng Dongming, Li Jianan, Wu Gang, et al. Fast modeling and dynamic analysis method for vehicle-bridge interaction system considering road roughness. Journal of Southeast University, 2022, 52(6): 1088-1094 (in Chinese)
|
[15] |
王艳, 刘哲, 周瑞娇等. 基于车桥耦合振动分析的大跨径曲弦桁梁桥加固方案评价研究. 振动与冲击, 2022, 41(14): 199-209 (Wang Yan, Liu Zhe, Zhou Ruijiao, et al. Evaluation of the reinforcement scheme for a long-span curved truss bridge based on vehicle-bridge coupled vibration analysis. Journal of Vibration and Shock, 2022, 41(14): 199-209 (in Chinese) doi: 10.13465/j.cnki.jvs.2022.14.027
|
[16] |
崔圣爱, 张猛, 曾光等. 基于车桥耦合振动的双层六线铁路桥梁疲劳性能评估. 东南大学学报, 2023, 53(1): 67-75 (Cui Shengai, Zhang Meng, Zeng Guang, et al. Fatigue performance assessment of double-deck six-line railway bridge based on vehicle-bridge coupling vibration. Journal of Southeast University, 2023, 53(1): 67-75 (in Chinese)
|
[17] |
Gao H, Yang BB. Parametric vibration of a flexible structure excited by periodic passage of moving oscillators. Journal of Applied Mechanics, 2020, 87: 071001 doi: 10.1115/1.4046781
|
[18] |
Konig P, Salcher P, Adam C. An efficient model for the dynamic vehicle-track-bridge-soil interaction system. Engineering Structures, 2022, 253: 113769 doi: 10.1016/j.engstruct.2021.113769
|
[19] |
阳洋, 许文明, 卢会城等. 基于车桥耦合理论的梁式桥阻尼比识别研究. 力学学报, 2022, 54(5): 1387-1402 (Yang Yang, Xu Wenming, Lu Huicheng, et al. Research on damping ratio identification of beam bridge based on vehicle bridge coupling theory. China Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1387-1402 (in Chinese) doi: 10.6052/0459-1879-21-691
|
[20] |
Zhang Q, Vrouwenvelder A, Wardenier J. Numerical simulation of train-bridge interactive dynamics. Computers and Structures, 2001, 79(10): 1059-1075 doi: 10.1016/S0045-7949(00)00181-4
|
[21] |
Zhu XQ, Law SS. Precise time-step integration for the dynamic response of a continuous beam under moving loads. Journal of Sound and Vibration, 2001, 240: 962-970 doi: 10.1006/jsvi.2000.3184
|
[22] |
Zhai WM. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214 doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
|
[23] |
Stoura CD, Paraskevopoulos E, Dimitrakopoulos EG, et al. A dynamic partitioning method to solve the vehicle-bridge interaction problem. Computers and Structures, 2021, 251: 106547 doi: 10.1016/j.compstruc.2021.106547
|
[24] |
李韶华, 冯桂珍, 丁虎. 考虑胎路多点接触的电动汽车−路面耦合系统振动分析. 力学学报, 2021, 53(9): 2554-2568 (Li Shaohua, Feng Guizhen, Ding Hu. Vibration analysis of electric vehicle-road coupling system considering tire-road multi-point contact. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2554-2568 (in Chinese)
|
[25] |
Liu K, Kujath MR. Response of slowly time-varying systems to harmonic excitation. Journal of Sound and Vibration, 1994, 177: 423-432 doi: 10.1006/jsvi.1994.1444
|
[26] |
Ge CQ, Tan CA, Lin K, et al. On the efficacy and accuracy of freezing technique for the response analysis of time-varying vehicle-bridge interaction systems. Journal of Sound and Vibration, 2021, 514: 116453 doi: 10.1016/j.jsv.2021.116453
|
[27] |
Sheng GG, Wang X. The geometrically nonlinear dynamic responses of simply supported beams under moving loads. Applied Mathematical Modelling, 2017, 48: 183-195 doi: 10.1016/j.apm.2017.03.064
|
[28] |
钟万勰. 结构动力方程的精细时程积分法. 大连理工大学学报, 1994, 34(2): 131-136 (Zhong Wanxie. On precise time-integration method for structural dynamics. Journal of Dalian University of Technology, 1994, 34(2): 131-136 (in Chinese)
|
[29] |
高强, 谭述君, 钟万勰. 精细积分方法研究综述. 中国科学:技术科学, 2016, 46(12): 1207-1218 (Gao Qiang, Tan Shujun, Zhong Wanxie. A survey of the precise integration method. Scientia Sinica Technologica, 2016, 46(12): 1207-1218 (in Chinese) doi: 10.1360/N092016-00205
|
[30] |
Tian W, Yang ZC, Gu YS. Dynamic analysis of an aeroelastic airfoil with freeplay nonlinearity by precise integration method based on Pade approximation. Nonlinear Dynamics, 2017, 89(3): 2173-2194 doi: 10.1007/s11071-017-3577-z
|
[31] |
Zhou XK, Duan ML, Granados JJ. Precise integration method for natural frequencies and mode shapes of ocean risers with elastic boundary conditions. Applied Mathematical Modelling, 2018, 61: 709-725 doi: 10.1016/j.apm.2018.05.017
|
[32] |
Zhu L, Ye KQ, Huang DW, et al. An adaptively filtered precise integration method considering perturbation for stochastic dynamics problems. Acta Mechanica Solida Sinica, 2023, 36: 317-326 doi: 10.1007/s10338-023-00381-4
|
[33] |
顾元宪, 陈飚松, 张洪武. 结构动力方程的增维精细积分法. 力学学报, 2000, 32(4): 447-456 (Gu Yuanxian, Chen Biaosong, Zhang Hongwu. Precise time-integration with dimension expanding method. China Journal of Theoretical and Applied Mechanics, 2000, 32(4): 447-456 (in Chinese)
|
[34] |
富明慧, 刘祚秋, 林敬华. 一种广义精细积分法. 力学学报, 2007, 39(5): 672-677 (Fu Minghui, Liu Zuoqiu, Lin Jinghua. A generalized precise time step integration method. China Journal of Theoretical and Applied Mechanics, 2007, 39(5): 672-677 (in Chinese)
|
[35] |
Huang YA, Deng ZC, Yao LX. An improved symplectic precise integration method for analysis of the rotating rigid-flexible coupled system. Journal of Sound and Vibration, 2007, 299(1-2): 229-246 doi: 10.1016/j.jsv.2006.07.009
|
[36] |
Hu WP, Huai YL, Xu MB, et al. Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids. Mechanical Systems and Signal Processing, 2021, 159: 107833 doi: 10.1016/j.ymssp.2021.107833
|
[37] |
Wu F, Gao Q, Zhong WX. Fast precise integration method for hyperbolic heat conduction problems. Applied Mathematics and Mechanics-English Edition, 2013, 34(7): 791-800 doi: 10.1007/s10483-013-1707-6
|
[38] |
Hochbruck M, Ostermann A. Exponential integrators. Acta Numerica, 2010, 19(1): 209-286
|
[39] |
Cox SM, Matthews PC. Exponential time differencing for stiff systems. Journal of Computational Physics, 2002, 176(2): 430-455 doi: 10.1006/jcph.2002.6995
|
[40] |
Gu XL, Jiang CL, Wang YS, et al. Efficient energy-preserving exponential integrators for multi-component Hamiltonian systems. Journal of Scientific Computing, 2022, 92(1): 26 doi: 10.1007/s10915-022-01874-z
|
[41] |
邓子辰, 李庆军. 精细指数积分法在卫星编队飞行动力学中的应用. 北京大学学报, 2016, 52(4): 669-675 (Deng Zichen, Li Qingjun. Precise exponential integrator and its application in dynamics of spacecraft formation flying. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 669-675 (in Chinese)
|
[42] |
Zhang JN, Yang SP, Li SH, et al. Study on crack propagation path of asphalt pavement under vehicle-road coupled vibration. Applied Mathematical Modelling, 2022, 101: 481-502 doi: 10.1016/j.apm.2021.09.004
|
[43] |
李梦琪, 张锋, 冯德成等. 车桥耦合下钢桥面沥青铺装层动力响应研究. 工程力学, 2019, 36(12): 177-187 (Li Mengqi, Zhang Feng, Feng Decheng et al. Dynamic response of steel deck asphalt pavement considering vehicle-bridge coupling effect. Engineering Mechanics, 2019, 36(12): 177-187 (in Chinese)
|
[44] |
Zhong WX. On precise integration method. Journal of Computational and Applied Mathematics, 2004, 163(1): 59-78 doi: 10.1016/j.cam.2003.08.053
|
[45] |
Lin K, Tan CA, Ge CQ, et al. Time-varying transmissibility analysis of vehicle-bridge interaction systems with application to bridge-friendly vehicles. International Journal of Structural Stability and Dynamics, 2022, 22(5): 2250022
|
[46] |
邓子辰, 曹珊珊, 李庆军等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究. 中国科学: 技术科学, 2016, 46(12): 1242-1253 (Deng Zichen, Cao Shanshan, Li Qingjun et al. Dynamic behavior of sail tower SPS based on the symplectic Runge-Kutta method. Scientia Sinica Technologica, 2016, 46(12): 1242-1253 (in Chinese) doi: 10.1360/N092016-00163
|
[47] |
Yau JD, Yang YB, Kuo SR. Impact response of high speed rail bridges and riding comfort of rail cars. Engineering Structures, 1999, 21(9): 836-844 doi: 10.1016/S0141-0296(98)00037-6
|
[1] | Fu Peilin, Ding Li, Zhao Jizhong, Zhang Xu, Kan Qianhua, Wang Ping. FRICTIONAL TEMPERATURE ANALYSIS OF TWO-DIMENSIONAL ELASTO-PLASTIC WHEEL-RAIL SLIDING CONTACT WITH TEMPERATURE-DEPENDENT MATERIAL PROPERTIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1245-1254. DOI: 10.6052/0459-1879-20-122 |
[2] | Yan Kai, Ning Zhi, Lü Ming, Sun Chunhua, Fu Juan, Li Yuanxu. STUDY ON CORRELATION OF BREAKUP DROPLET SIZE AND VELOCITY DISTRIBUTIONS OF AN ANNULAR SWIRLING VISCOUS LIQUID SHEET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 566-575. DOI: 10.6052/0459-1879-15-084 |
[3] | Jiang Chao, Zheng Jing, Han Xu, Zhang Qingfei. A PROBABILITY AND INTERVAL HYBRID STRUCTURAL RELIABILITY ANALYSIS METHOD CONSIDERING PARAMETERS’ CORRELATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 591-600. DOI: 10.6052/0459-1879-14-025 |
[4] | Liang Chaofeng, Liu Tiejun, Zou Dujian, Yang Qiuwei. THE FREQUENCY-DEPENDENT STUDY ON VISCOSITY COEFFICIENT AND LOSS TANGENT OF VISCOELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 933-937. DOI: 10.6052/0459-1879-12-031 |
[5] | Quanyou Zhang, Weiyi Chen, Xiaochun Wei, Chunjiang Li, Linlin Liu. The effects of age on viscoelasticity and deformation recovery of articular chondrocytes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 906-912. DOI: 10.6052/0459-1879-2009-6-2008-401 |
[6] | Xiaojuan Dong. The relationship between stochastic resonance and the average phase-synchronization time[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 775-782. DOI: 10.6052/0459-1879-2009-5-2008-549 |
[7] | A CONSTITUTIVE MODEL FOR NONPROPORTIONAL CYCLIC PLASTICITY WITH LOADINGPATH DEPENDENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 484-492. DOI: 10.6052/0459-1879-1999-4-1995-057 |
[8] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
[9] | 分层流体中栅格湍流的特性[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 257-264. DOI: 10.6052/0459-1879-1991-3-1995-836 |
[10] | 样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940 |