Citation: | Zong Shaoqiang, Xu Long, Hao Jiguang. Experimental study on viscous Newtonian droplet impacts on dry or pre-wetted meshes. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 101-111. DOI: 10.6052/0459-1879-23-344 |
[1] |
Brunet P, Lapierre F, Zoueshtiagh F, et al. To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid. Applied Physics Letters, 2009, 95: 254102 doi: 10.1063/1.3275709
|
[2] |
Hsu CF, Ashgriz N. Impaction of a droplet on an orifice plate. Physics of Fluids, 2004, 16: 400-411 doi: 10.1063/1.1637036
|
[3] |
Soto D, Girard HL, Helloco AL, et al. Droplet fragmentation using a mesh. Physical Review Fluids, 2018, 3: 083602 doi: 10.1103/PhysRevFluids.3.083602
|
[4] |
Kooij SA, Moqaddam AM, Goede TCD, et al. Sprays from droplets impacting a mesh. Journal of Fluid Mechanics, 2019, 871: 489-509 doi: 10.1017/jfm.2019.289
|
[5] |
Wang L, Wu X, Yu W, et al. Numerical study of droplet fragmentation during impact on mesh screens. Microfluidics and Nanofluidics, 2019, 23: 136
|
[6] |
Yarin AL. Novel nanofluidic and microfluidic devices and their applications. Current Opinion in Chemical Engineering, 2020, 29: 17-25 doi: 10.1016/j.coche.2020.02.004
|
[7] |
Brewer SA, Willis CR. Structure and oil repellency: Textiles with liquid repellency to hexane. Applied Surface Science, 2008, 254: 6450-6454 doi: 10.1016/j.apsusc.2008.04.053
|
[8] |
Kim H, Park Y, Kim H, et al. Critical heat flux enhancement by single layered metal wire mesh with micro and nano-sized pore structures. International Journal of Heat and Mass Transfer, 2017, 115: 439-449 doi: 10.1016/j.ijheatmasstransfer.2017.08.066
|
[9] |
Modak CD, Kumar A, Tripathy A, et al. Drop impact printing. Nature Communications, 2020, 11: 4327 doi: 10.1038/s41467-020-18103-6
|
[10] |
Lohse D. Fluid mech: Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382
|
[11] |
He P, Cao J, Ding H, et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Applied Materials & Interfaces, 2019, 11: 32225-32234
|
[12] |
Al-Dughaither AS, Ibrahim AA, Al-Masry WA. Investigating droplet separation efficiency in wire-mesh mist eliminators in bubble column. Journal of Saudi Chemical Society, 2010, 14: 331-339 doi: 10.1016/j.jscs.2010.04.001
|
[13] |
Wang B, Guo ZG. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Applied Physics Letters, 2013, 103: 063704 doi: 10.1063/1.4817922
|
[14] |
Dunderdale G, Urata C, Sato T, et al. Continuous, high-speed, and efficient oil/water separation using meshes with antagonistic wetting properties. ACS Applied Materials & Interfaces, 2015, 7(34): 18915-18919
|
[15] |
Pi P, Hou K, Zhou C, et al. A novel superhydrophilic-underwater superoleophobic Cu2 S coated copper mesh for efficient oil-water separation. Materials Letters, 2016, 182: 68-71 doi: 10.1016/j.matlet.2016.06.087
|
[16] |
Wen R, Xu S, Zhao D, et al. Sustaining enhanced condensation on hierarchical mesh-covered surfaces. National Science Review, 2018, 5: 878-887
|
[17] |
Tudu BK, Kumar A. Robust and durable superhydrophobic steel and copper meshes for separation of oil-water emulsions. Progress in Organic Coating, 2019, 133: 316-324.
|
[18] |
张星, 刘金鑫, 张海峰等. 防护口罩用非织造滤料的制备技术与研究现状. 纺织学报, 2020, 41(3): 168-174 (Zhang Xing, Liu Jinxin, Zhang Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks. Journal of Textile Research, 2020, 41(3): 168-174 (in Chinese)
Zhang xing, Liu jinxin, Zhang haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks. Journal of Textile Research, 2020, 41(03): 168-174(in Chinese)
|
[19] |
Bagchi S, Basu S, Chaudhuri S, et al. Penetration and secondary atomization of droplets impacted on wet facemasks. Physical Review Fluids, 2021, 6: 110510 doi: 10.1103/PhysRevFluids.6.110510
|
[20] |
Sharma S, Pinto R, Saha A, et al. On secondary atomization and blockage of surrogate cough droplets in single- and multilayer face masks. Science Advances, 2021, 7: eabf0452 doi: 10.1126/sciadv.abf0452
|
[21] |
Solano T, Ni C, Mittal R, et al. Perimeter leakage of face masks and its effect on the mask's efficacy. Physics of Fluids, 2022, 34: 051902 doi: 10.1063/5.0086320
|
[22] |
Liu Y, Yan X, Wang Z. Droplet dynamics on slippery surfaces: Small droplet, big impact. Biosurface and Biotribology, 2019, 5: 35-45 doi: 10.1049/bsbt.2019.0004
|
[23] |
Xu L, Zhang WW, Nagel SR. Drop splashing on a dry smooth surface. Physical Review Letters, 2005, 94: 184505
|
[24] |
Yarin AL. Drop impact dynamics: Splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 2006, 38: 159-192
|
[25] |
Thoroddsen ST, Etoh TG, Takehara K. High-speed imaging of drops and bubbles. Annual Review of Fluid Mechanics, 2008, 40: 257-285
|
[26] |
Riboux G, Gordillo JM. Experiments of drops impacting a smooth solid surface: A model of the critical impact speed for drop splashing. Physical Review Letters, 2014, 113: 024507
|
[27] |
Liu Y, Moevius L, Xu X, et al. Pancake bouncing on superhydrophobic surfaces. Nature Physics, 2014, 10: 515-519 doi: 10.1038/nphys2980
|
[28] |
Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2: 044018 doi: 10.1103/PhysRevApplied.2.044018
|
[29] |
Josserand C, Thoroddsen ST. Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2016, 48: 365-391 doi: 10.1146/annurev-fluid-122414-034401
|
[30] |
Liang G, Mudawar I. Review of drop impact on heated walls. International Journal of Heat and Mass Transfer, 2017, 106: 103-126 doi: 10.1016/j.ijheatmasstransfer.2016.10.031
|
[31] |
Hao J, Lu J, Lee L, et al. Droplet splashing on an inclined surface. Physical Review Letters, 2019, 122: 054501
|
[32] |
孙姣, 周维, 蔡润泽等. 垂直壁面附近上升单气泡的弹跳动力学研究. 力学学报, 2020, 52(1): 1-11 (Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11 (in Chinese) doi: 10.6052/0459-1879-19-228
Sun Jiao, Zhou Wei, Cai Runze, et al. The bounce dynamics of a rising single bubble near a vertical wall. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 1-11 (in Chinese) doi: 10.6052/0459-1879-19-228
|
[33] |
万其文, 陈效鹏, 胡海豹等. 中性润湿平板上液膜的惯性收缩. 力学学报, 2022, 54(6): 1516-1522 (Wan Qiwen, Chen Xiaopeng, Hu Haibao, et al. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 (in Chinese)
Wan Qiwen, Chen Xiaopeng, Hu Haibao, et al. Inertial retraction of liquid film on moderately wettable plate. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1516-1522 (in Chinese)
|
[34] |
Xu L, Ji W, Lu J, et al. Droplet impact on a prewetted mesh. Physical Review Fluids, 2021, 6: L101602 doi: 10.1103/PhysRevFluids.6.L101602
|
[35] |
Ryu S, Sen P, Nam Y, et al. Water penetration through a superhydrophobic mesh during a drop impact. Physical Review Letters, 2017, 118: 014501 doi: 10.1103/PhysRevLett.118.014501
|
[36] |
Sen U, Roy T, Chatterjee S, et al. Post-impact behavior of a droplet impacting on a permeable metal mesh with a sharp wettability step. Langmuir, 2019, 35: 12711-12721 doi: 10.1021/acs.langmuir.9b02486
|
[37] |
Zhang G, Quetzeri-Santiago MA, Stone CA, et al. Droplet impact dynamics on textiles. Soft Matter, 2018, 14: 8182-8190 doi: 10.1039/C8SM01082J
|
[38] |
Lorenceau É, Quéré D. Drops impacting a sieve. Journal of Colloid and Interface Science, 2003, 263: 244-249 doi: 10.1016/S0021-9797(03)00126-7
|
[39] |
Sahu RP, Sinha-Ray S, Yarin A, et al. Drop impacts on electrospun nanofiber membranes. Soft Matter, 2012, 8: 3957-3970 doi: 10.1039/c2sm06744g
|
[40] |
Boscariol C, Chandra S, Sarker D, et al. Drop impact onto attached metallic meshes: liquid penetration and spreading. Experiments in Fluids, 2018, 59: 1-13 doi: 10.1007/s00348-017-2450-7
|
[41] |
Lembach AN, Tan HB, Roisman IV, et al. Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir, 2010, 26: 9516-9523 doi: 10.1021/la100031d
|
[42] |
Sahu R, Sett S, Yarin A, et al. Impact of aqueous suspension drops onto non-wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles. Colloids and Surfaces A, 2015, 467: 31-45 doi: 10.1016/j.colsurfa.2014.11.023
|
[43] |
Bae C, Oh S, Han J, et al. Water penetration dynamics through a Janus mesh during drop impact. Soft Matter, 2020, 16: 6072-6081 doi: 10.1039/D0SM00567C
|
[44] |
Sun L, Lin S, Pang B, et al. Water sprays formed by impinging millimeter-sized droplets on superhydrophobic meshes. Physics of Fluids, 2021, 33(9): 092111 doi: 10.1063/5.0058512
|
[45] |
An T, Cho SJ, Choi W, et al. Preparation of stable superhydrophobic mesh with a biomimetic hierarchical Structure. Soft Matter, 2011, 7: 9867-9870 doi: 10.1039/c1sm06238g
|
[46] |
Kumar A, Tripathy A, Modak CD, et al. Designing assembly of meshes having diverse wettability for reducing liquid ejection at terminal velocity droplet impact. Journal of Microelectromechanical Systems, 2018, 27: 866-873 doi: 10.1109/JMEMS.2018.2850903
|
[47] |
Su M, Luo Y, Chu G, et al. Dispersion behaviors of droplet impacting on wire mesh and process intensification by surface micro/nano-structure. Chemical Engineering Science, 2020, 219: 115593 doi: 10.1016/j.ces.2020.115593
|
[48] |
Jamali M, Vahedi TH, Pourdeyhimi B, et al. Penetration of liquid droplets into hydrophobic fibrous materials under enhanced gravity. Journal of Applied Physics, 2019, 125: 145304
|
[49] |
Kumar A, Tripathy A, Nam Y, et al. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes. Soft Matter, 2018, 14: 1571-1580 doi: 10.1039/C7SM02145C
|
[50] |
de Goede TC, Moqaddam AM, Limpens K, et al. Droplet impact of Newtonian fluids and blood on simple fabrics: Effect of fabric pore size and underlying substrate. Physics of Fluids, 2021, 33: 033308 doi: 10.1063/5.0037123
|
[51] |
Tang Y, Su M, Chu G, et al. Impact phenomena of liquid droplet passing through stainless steel wire mesh units. Chemical Engineering Science, 2019, 198: 144-154 doi: 10.1016/j.ces.2018.12.035
|
[52] |
Xu J, Xie J, He X, et al. Water drop impacts on a single-layer of mesh screen membrane: Effect of water hammer pressure and advancing contact angles. Experimental Thermal and Fluid Science, 2017, 82: 83-93 doi: 10.1016/j.expthermflusci.2016.11.006
|
[53] |
Xu L, Zong S, Hao J, et al. Droplet penetration through an inclined Mesh. Physics of Fluids, 2022, 34: 122105 doi: 10.1063/5.0126982
|
[54] |
Blackwell BC, Nadhan AE, Ewoldt RH, et al. Impacts of yield-stress fluid drops on permeable mesh substrates. Journal of Non-Newtonian Fluid Mechanics, 2016, 238: 107-114 doi: 10.1016/j.jnnfm.2016.06.012
|
[55] |
Mehrizi A, Lin S, Sun L, et al. Spectacular behavior of a viscoelastic droplet impinging on a superhydrophobic mesh. Langmuir, 2022, 38: 6106-6115 doi: 10.1021/acs.langmuir.2c00385
|
[56] |
Wang G, Gao J, Luo KH. Droplet impacting a superhydrophobic mesh array: Effect of liquid properties. Physical Review Fluids, 2020, 5: 123605 doi: 10.1103/PhysRevFluids.5.123605
|
[57] |
Vontas K, Boscariol C, Andredaki M, et al. Droplet impact on suspended metallic meshes: effects of wettability, Reynolds and Weber numbers. Fluids, 2020, 5: 81 doi: 10.3390/fluids5020081
|
[58] |
Abouelsoud M, Kherbeche A, Thoraval, MJ. Drop impact on a mesh—Viscosity effect. Journal of Colloid and Interface Science, 2023, 648: 37-45 doi: 10.1016/j.jcis.2023.04.099
|
[59] |
Cheng N. Formula for the viscosity of a glycerol-water mixture. Chemical Engineering Research and Design, 2008, 47: 3285-3288 doi: 10.1021/ie071349z
|
[60] |
Zang D, Wang X, Geng X, et al. Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter, 2013, 9: 394-400 doi: 10.1039/C2SM26759D
|
[61] |
Lin K, Zang D, Geng X, et al. Revisiting the effect of hierarchical structure on the super hydrophobicity. The European Physical Journal E, 2016, 39: 15 doi: 10.1140/epje/i2016-16015-8
|
[62] |
Lin K, Zang D, Li X, et al. Superhydrophobic polytetrafluoroethylene surfaces by spray coating on porous and continuous substrates. The Royal Society of Chemistry, 2016, 6: 47096-47100
|
[63] |
Eral HB, ’tMannetje DJCM, Oh JM. Contact angle hysteresis: a review of fundamentals and applications. Colloid and Polymer Science, 2013, 291: 247-260 doi: 10.1007/s00396-012-2796-6
|
[1] | Zhi Peng, Wu Yuching. GRAPH NEURAL NETWORKS ACCELERATED GRANULAR FLOW BASED ON DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3601-3611. DOI: 10.6052/0459-1879-24-269 |
[2] | Li Wen, Liu Qipeng, Gao Yuehua, Chu Xihua, Zhang Zhao, Wang Zhenjun. INVESTIGATION INTO SLM BLADE INCLINATION EFFECT ON POWDER SPREADING BEHAVIOR BASED ON DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 774-784. DOI: 10.6052/0459-1879-23-462 |
[3] | Zhang Wei, Xiao Weijian, Yuan Chuanniu, Zhang Ning, Liu Kun. EFFECT OF PARTICLE SIZE DISTRIBUTION ON FORCE CHAIN EVOLUTION MECHANISM IN IRON POWDER COMPACTION BY DISCRETE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2489-2500. DOI: 10.6052/0459-1879-22-204 |
[4] | Sun Yuanyuan, Jiang Wugui, Xu Gaogui, Chen Tao, Mao Longhui. INFLUENCE OF ROUGH SURFACE OF DEPOSITED AREA ON QUALITY OF POWDER SPREADING DURING SELECTIVE LASER MELTING: DISCRETE ELEMENT SIMULATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3217-3227. DOI: 10.6052/0459-1879-21-399 |
[5] | Chen Hui, Yan Wentao. DYNAMIC BEHAVIOURS OF POWDER PARTICLES IN SELECTIVE LASER MELTING ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3206-3216. DOI: 10.6052/0459-1879-21-403 |
[6] | Duan Zongyang, Zhao Yunhua, Xu Zhang. CHARACTERIZATION OF NEAR-WALL PARTICLE DYNAMICS BASED ON DISCRETE ELEMENT METHOD ANDARTIFICIAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2656-2666. DOI: 10.6052/0459-1879-21-313 |
[7] | Zhang Jiangtao, Tan Yuanqiang, Ji Caiyuan, Xiao Xiangwu, Jiang Shengqiang. RESEARCH ON THE EFFECTS OF ROLLER-SPREADING PARAMETERS FOR NYLON POWDER SPREADABILITY IN ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2416-2426. DOI: 10.6052/0459-1879-21-240 |
[8] | Tan Yuanqiang, Xiao iangwu, Zhang Jiangtao, Jiang Shengqiang. DETERMINATION OF DISCRETE ELEMENT MODEL CONTACT PARAMETERS OF NYLON POWDER AT SLS PREHEATING TEMPERATURE AND ITS FLOW CHARATERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 56-63. DOI: 10.6052/0459-1879-18-341 |
[9] | Wang Zenghui, Li Xikui. MESO-MECHANICALLY INFORMED MACROSCOPIC CHARACTERIZATION OF DAMAGE-HEALING-PLASTICITY FOR GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 284-296. DOI: 10.6052/0459-1879-17-362 |
[10] | Xue Huaqing, Xu Ruina, Jiang Peixue, Zhou Shangwen. CHARACTERIZATION OF ROCK MICROSTRUCTURE USING 3D X-RAY COMPUTED TOMOGRAPHY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1073-1078. DOI: 10.6052/0459-1879-15-102 |
1. |
李雯,刘其鹏,高月华,楚锡华,张昭,王振军. 基于离散元法的SLM刮刀倾角对粉末铺展行为的影响研究. 力学学报. 2024(03): 774-784 .
![]() |