Citation: | Chen Jiahui, Wu Shiliang, Xiao Rui. Preparation and application of biomass-based long-chain oxygenated fuels. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2768-2778. DOI: 10.6052/0459-1879-23-323 |
[1] |
Lin Y, Wang C, Yu G, et al. Transformation of tobacco biomass into value-added carbohydrate, aromatics, and biochar. Biomass Conversion and Biorefinery, 2022, in press
|
[2] |
Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. Bioresources and Bioprocessing, 2021, 8(1): 14 doi: 10.1186/s40643-021-00365-7
|
[3] |
Li S, Wu Y, Dao MU, et al. Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. Chemosphere, 2023, 318: 137954 doi: 10.1016/j.chemosphere.2023.137954
|
[4] |
Guo M, Song W, Buhain J. Bioenergy and biofuels: History, status, and perspective. Renewable and Sustainable Energy Reviews, 2015, 42: 712-725 doi: 10.1016/j.rser.2014.10.013
|
[5] |
吴石亮. 生物质基多元醇醚含氧燃料制备及燃烧特性研究. [博士论文]. 南京: 东南大学, 2018
Wu Shiliang. Study on preparation and combustion characteristics of bio-based polyol ethers oxygenated liquid fuel. [PhD Thesis]. Nanjing: Southeast University, 2018 (in Chinese))
|
[6] |
Reyes L, Abdelouahed L, Mohabeer C, et al. Energetic and exergetic study of the pyrolysis of lignocellulosic biomasses, cellulose, hemicellulose and lignin. Energy Conversion and Management, 2021, 244: 114459 doi: 10.1016/j.enconman.2021.114459
|
[7] |
Makepa DC, Chihobo CH, Musademba D. Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass. Biofuels, 2023, 14(5): 529-550 doi: 10.1080/17597269.2022.2151459
|
[8] |
Qiu B, Tao X, Wang J, et al. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Conversion and Management, 2022, 261: 115647 doi: 10.1016/j.enconman.2022.115647
|
[9] |
Jamalzade E, Kashkooli K, Griffin L, et al. Production of jet-fuel-range molecules from biomass-derived mixed acids. Reaction Chemistry & Engineering, 2021, 6(5): 845-857
|
[10] |
Liu Z, Zhang Z, Wen Z, et al. High efficiency catalytic transfer hydrogenation of furfural to furfuryl alcohol over metallic oxide catalyst. Catalysis Letters, 2022, 152(12): 3537-3547 doi: 10.1007/s10562-022-03924-5
|
[11] |
Cui F, Huang S, Jin R, et al. Integration of a well-designed biomass pair in electrochemical hydrogen pump reactor: ethylene glycol dehydrogenation and levulinic acid hydrogenation. International Journal of Hydrogen Energy, 2022, 47(65): 28086-28094 doi: 10.1016/j.ijhydene.2022.06.129
|
[12] |
Vikanova KV, Redina EA, Kapustin GI. Liquid-phase hydrogenation of benzaldehyde on low-percentage pt-containing catalysts under mild conditions. Russian Journal of Physical Chemistry A, 2022, 96(1): 71-74 doi: 10.1134/S0036024422010277
|
[13] |
陈佳慧, 王斐菲, 张乃丽等. 生物航油的制备与应用发展前景. 能源研究与利用, 2021, 4: 21-31 (Chen Jiahui, Wang Feifei, Zhang Naili, et al. Preparation and application of biological aviation fuel: current status and development prospects. Energy Research & Utilization, 2021, 4: 21-31 (in Chinese) doi: 10.3969/j.issn.1001-5523.2021.04.005
Chen Jiahui, Wang Feifei, Zhang Naili, et al. Preparation and Application of Biological Aviation Fuel: Current Status and Development Prospects. Energy Research & Utilization, 2021(04): 21-31(in Chinese)) doi: 10.3969/j.issn.1001-5523.2021.04.005
|
[14] |
邓玥, 仲兆平. 生物质费托合成制取液体燃料的仿真及分析. 太阳能学报, 2022, 43(4): 468-473 (Deng Yue, Zhong Zhaoping. Simulation and energy analysis of liquid fuel produced by fischer-tropsch synthesis of biomass. Acta Energiae Solaris Sinica, 2022, 43(4): 468-473 (in Chinese)
Deng Yue, Zhong Zhaoping. Simulation and energy analysis of liquid fuel produced by fischer-tropsch synthesis of biomass. Acta Energiae Solaris Sinica, 2022, 43(04): 468-473(in Chinese))
|
[15] |
Serrano-Ruiz JC, Wang D, Dumesic JA. Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 2010, 12(4): 574-577 doi: 10.1039/b923907c
|
[16] |
高昊飞. 以生物质衍生物合成高密度航空燃料. [硕士论文]. 汉中: 陕西理工大学, 2022
Gao Haofei. Synthesis of high-density aviation fuel from biomass derivativies. [Master Thesis]. Hanzhong: Shanxi University of Technology, 2022 (in Chinese))
|
[17] |
Li G, Li N, Wang Z, et al. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. ChemSusChem, 2012, 5(10): 1958-1966 doi: 10.1002/cssc.201200228
|
[18] |
李闯. 纤维素及其平台分子催化氢化研究. [博士论文]. 合肥: 中国科学技术大学, 2020
Li Chang. Studies on the Catalytic Hydrogenation of Cellulose and Platform Molecule. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese))
|
[19] |
Gabriel CB, Canhaci SJ, Borges LEP, et al. Aviation biofuel range cycloalkane from renewables: Liquid-phase catalytic conversion of menthol on niobia-supported catalysts. Fuel, 2020, 277: 118288 doi: 10.1016/j.fuel.2020.118288
|
[20] |
陈伦刚, 张兴华, 张琦等. 木质纤维素解聚平台分子催化合成航油技术的进展. 化工进展, 2019, 38(3): 1269-1282 (Chen Lungang, Zhang Xinghua, Zhang Qi, et al. Progress in aviation biofuel technology by catalysis synthesis of platform molecules form lignocelluloses depolymerization. Chemical Industry and Engineering Progress, 2019, 38(3): 1269-1282 (in Chinese) doi: 10.16085/j.issn.1000-6613.2018-0984
Chen Lungang, Zhang Xinghua, Zhang Qi, et al. Progress in aviation biofuel technology by catalysis synthesis of platform molecules form lignocelluloses depolymerization. Chemical Industry and Engineering Progress, 2019, 38(03): 1269-1282 (in Chinese)) doi: 10.16085/j.issn.1000-6613.2018-0984
|
[21] |
Hagos FY, Ali OM, Mamat R, et al. Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renewable and Sustainable Energy Reviews, 2017, 75: 1281-1294 doi: 10.1016/j.rser.2016.11.113
|
[22] |
Adhikesavan C, Balamurugan C, Ganesh D. Application of genetic algorithm for increasing the utilization of poor-quality biodiesel through blending. Journal of Oleo Science, 2021, 70(8): 1039-1050 doi: 10.5650/jos.ess20296
|
[23] |
周华, 栗振华, 孔祥贵等. 生物质平台化合物电催化制备高值燃料与化学品研究进展. 高等学校化学学报, 2020, 41(7): 1449-1460 (Zhou Hua, Li Zhenhua, Kong Xianggui, et al. Research progress on electrocatalytic preparation of high-value fuels and chemicals from biomass platform compounds. Chemical Journal of Chinese Universities, 2020, 41(7): 1449-1460 (in Chinese) doi: 10.7503/cjcu20200212
Zhou Hua, Li Zhenhua, Kong Xianggui, et al. Research progress on electrocatalytic preparation of high-value fuels and chemicals from biomass platform compounds. Chemical Journal of Chinese Universities, 2020, 41(7): 1449-1460 (in Chinese)) doi: 10.7503/cjcu20200212
|
[24] |
杨佳鑫, 司传领, 刘坤等. 木质纤维生物质制备乙酰丙酸及其应用综述. 林业工程学报, 2020, 5(5): 21-27 (Yang Jiaxing, Si Chuanling, Liu Kun, et al. Production of levulinic acid from lignocellulosic biomass and application. Journal of Forestry Engineering, 2020, 5(5): 21-27 (in Chinese)
Yang Jiaxing, Si Chuanling, Liu Kun, et al. Production of levulinic acid from lignocellulosic biomass and application. Journal of Forestry Engineering, 2020, 5(05): 21-27 (in Chinese))
|
[25] |
高丽娟, 李文涛, 韩晓峰等. 木糖热解过程中丙酮形成机理的理论研究. 新能源进展, 2019, 7(5): 405-414 (Gao Liguan, Li Wentao, Han Xiaofeng, et al. A theoretical study on the formation mechanism of acetone in the process of xylose pyrolysis. Advances in New and Renewable Energy, 2019, 7(5): 405-414 (in Chinese) doi: 10.3969/j.issn.2095-560X.2019.05.004
Gao Liguan, Li Wentao, Han Xiaofeng, et al. A Theoretical Study on the Formation Mechanism of Acetone in the Process of Xylose Pyrolysis. Advances in New and Renewable Energy, 2019, 7(5): 405-414 (in Chinese)) doi: 10.3969/j.issn.2095-560X.2019.05.004
|
[26] |
Yan T, Yao S, Dai W, et al. Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites. Chinese Journal of Catalysis, 2021, 42(4): 595-605 doi: 10.1016/S1872-2067(20)63675-0
|
[27] |
Li H, Riisager A, Saravanamurugan S, et al. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catalysis, 2018, 8(1): 148-187 doi: 10.1021/acscatal.7b02577
|
[28] |
Homrani Y, Mouhsine B, Béthegnies A, et al. Efficient and sustainable one-pot synthesis of α-carbonyl homoallylic alcohols from benzaldehyde and allylic alcohols using both NHC and nickel catalysts. ChemCatChem, 2023, 15(10): e202300038 doi: 10.1002/cctc.202300038
|
[29] |
Gao D, Ouyang D, Bai Y, et al. Synthesis and computational investigation of antioxidants prepared by oxidative depolymerization of lignin and aldol condensation of aromatic aldehydes. ChemSusChem, 2023, 16(12): e202300208 doi: 10.1002/cssc.202300208
|
[30] |
Chen L, Liu Y, Zhang X, et al. Catalytic production of long-chain hydrocarbons suitable for aviation turbine fuel from biomass-derived levulinic acid and furfural. Fuel, 2023, 334: 126665 doi: 10.1016/j.fuel.2022.126665
|
[31] |
Liu Y, Wu S, Zhang H, et al. Preparation of carbonyl precursors for long-chain oxygenated fuels from cellulose ethanolysis catalyzed by metal oxides. Fuel Processing Technology, 2020, 206: 106468 doi: 10.1016/j.fuproc.2020.106468
|
[32] |
Faba L, Díaz E, Ordóñez S. Base-catalyzed condensation of levulinic acid: A new biorefinery upgrading approach. ChemCatChem, 2016, 8(8): 1490-1494 doi: 10.1002/cctc.201600064
|
[33] |
Li Z, Shao S, Hu X, et al. Insight into the production of aviation fuel by aldol condensation of biomass-derived aldehydes and ketones followed by hydrogenation. Biomass Conversion and Biorefinery, 2022, in press
|
[34] |
Peng TY, Xu ZY, Zhang FL, et al. Dehydroxylative alkylation of α-hydroxy carboxylic acid derivatives via a spin-center shift. Angewandte Chemie International Edition, 2022, 61(25): e202201329 doi: 10.1002/anie.202201329
|
[35] |
Shen Z, Zhang G, Shi C, et al. Bifunctional Pt/Hβ catalyzed alkylation and hydrodeoxygenation of phenol and cyclohexanol in one-pot to synthesize high-density fuels. Fuel, 2023, 334: 126634 doi: 10.1016/j.fuel.2022.126634
|
[36] |
Gancedo J, Faba L, Ordóñez S. Role of reactant alkylation grade in the selectivity and stability of Furan–Alkene Diels–Alder reactions. ACS Sustainable Chemistry & Engineering, 2022, 10(9): 3057-3065
|
[37] |
陈昊, 张传浩, 于峰等. Y型沸石在异丁醇齐聚反应中的催化性能. 化工进展, 2023, 42(2): 794-802 (Chen Hao, Zhang Chuanhao, Yu Feng, et al. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802 (in Chinese)
Chen Hao, Zhang Chuanhao, Yu Feng, et al. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802 (in Chinese))
|
[38] |
卢琪, 肖林久, 刘蝈蝈等. 烯烃齐聚催化剂的研究进展. 当代化工, 2020, 49(11): 2602-2610, 2614 (Lu Qi, Xiao Linjiu, Liu Guoguo, et al. Research progress of olefin oligomerization catalyst. Contemporary Chemical Industry, 2020, 49(11): 2602-2610, 2614 (in Chinese) doi: 10.3969/j.issn.1671-0460.2020.11.054
Lu Qi, Xiao Linjiu, Liu Guoguo, et al. Research Progress of Olefin Oligomerization Catalyst. Contemporary Chemical Industry, 2020, 49(11): 2602-2610 + 2614(in Chinese)) doi: 10.3969/j.issn.1671-0460.2020.11.054
|
[39] |
Urbaniak M, Pobłocki K, Kowalczyk P, et al. A series of green oxovanadium (IV) precatalysts with O, N and S donor ligands in a sustainable olefins oligomerization process. Molecules, 2022, 27(22): 8038 doi: 10.3390/molecules27228038
|
[40] |
訾仲岳, 李建青, 刘广波等. Ni-HZSM-5分子筛用于不同烯烃原料齐聚反应性能的研究. 现代化工, 2020, 40(9): 66-69 (Zi Zhongyue, Li Jianqing, Liu Guangbo, et al. Study on performance of Ni-HZSM-5 molecular sieve in catalyzing oligomerization of different olefins feedstocks. Modern Chemical Industry, 2020, 40(9): 66-69 (in Chinese)
Zi Zhongyue, Li Jianqing, Liu Guangbo, et al. Study on performance of Ni-HZSM-5 molecular sieve in catalyzing oligomerization of different olefins feedstocks. Modern Chemical Industry, 2020, 40(9): 66-69(in Chinese))
|
[41] |
Fehér C, Tomasek S, Hancsók J, et al. Oligomerization of light olefins in the presence of a supported Brønsted acidic ionic liquid catalyst. Applied Catalysis B:Environmental, 2018, 239: 52-60 doi: 10.1016/j.apcatb.2018.08.013
|
[42] |
Gao W, Wan Y, Zhao S, et al. Effects of furanic compounds from biomass pyrolysis on ketonization reaction: The role of oxygenated side groups. Fuel, 2023, 332: 125975 doi: 10.1016/j.fuel.2022.125975
|
[43] |
Pham TN, Sooknoi T, Crossley SP, et al. Ketonization of carboxylic acids: mechanisms, catalysts, and implications for biomass conversion. ACS Catalysis, 2013, 3(11): 2456-2473 doi: 10.1021/cs400501h
|
[44] |
Ding K, Zhou H, Wan Y, et al. Ketonization of xylose over CeO2 to produce mono-functional ketones. Fuel Processing Technology, 2021, 211: 106585 doi: 10.1016/j.fuproc.2020.106585
|
[45] |
Boekaerts B, Sels BF. Metal-free reduction creates highly active TiO2 surfaces for fatty acid ketonization. ACS Sustainable Chemistry & Engineering, 2022, 10(35): 11466-11472
|
[46] |
Chang H, Kim MS, Huber GW, et al. Design of closed-loop recycling production of a Diels–Alder polymer from a biomass-derived difuran as a functional additive for polyurethanes. Green Chemistry, 2021, 23(23): 9479-9488 doi: 10.1039/D1GC02865K
|
[47] |
Ravasco JMJM, Gomes RFA. Recent advances on diels-alder-driven preparation of bio-based aromatics. ChemSusChem, 2021, 14(15): 3047-3053 doi: 10.1002/cssc.202100813
|
[48] |
Kim H, Kim JR, Park YK, et al. Diels-Alder conversion of biomass-derived furans and ethylene to renewable aromatics over mesoporous titanium phosphate. Catalysis Today, 2024, 425: 114346 doi: 10.1016/j.cattod.2023.114346
|
[49] |
Wu S, Bao J, Wang Z, et al. The regulated emissions and PAH emissions of bio-based long-chain ethers in a diesel engine. Fuel Processing Technology, 2021, 214: 106724 doi: 10.1016/j.fuproc.2021.106724
|
[50] |
Guo H, Dowaki T, Shen F, et al. Critical assessment of reaction pathways for next-generation biofuels from renewable resources: 5-ethoxymethylfurfural. ACS Sustainable Chemistry & Engineering, 2022, 10(28): 9002-9021
|
[51] |
Lanzafame P, Temi DM, Perathoner S, et al. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts. Catalysis Today, 2011, 175(1): 435-441 doi: 10.1016/j.cattod.2011.05.008
|
[52] |
Fang W, Egebo J, Schill L, et al. Reductive etherification of furfural via hydrogenolysis with Pd-modified aluminum phosphate and formic acid. Green Chemistry, 2022, 24(19): 7346-7349 doi: 10.1039/D2GC02190K
|
[1] | Xia Weidong, Shi Kai, Wang Cheng, Wang Haomin, Chen Xianhui. THE PLASMA ENERGY ROUTE TO INDUSTRIAL CARBON NEUTRALITY IN CHINA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2779-2795. DOI: 10.6052/0459-1879-23-463 |
[2] | Liu Xiaohua, Zhang Tao, Liu Xiaochen, Jiang Yi. RETHINKING OF THE BUILDING ENERGY SYSTEM TOWARDS THE CARBON NEUTRAL TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 699-709. DOI: 10.6052/0459-1879-22-462 |
[3] | Yan Jun. SPECIAL ISSUE PREFACE: RESEARCH ON KEY MECHANICAL PROBLEMS IN MARINE ENERGY DEVELOPMENT EQUIPMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 844-845. DOI: 10.6052/0459-1879-22-156 |
[4] | Hou Xiuhui, Lü You, Zhou Shiqi, Zhu Zhiwei, Zhang Kai, Deng Zichen. MECHANICAL PROPERTIES ANALYSIS OF A NEW ENERGY ABSORBING STRUCTURE WITH NEGATIVE STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950. DOI: 10.6052/0459-1879-21-083 |
[5] | Li Ye, Wang Benlong, Zhan Shige. REVIEW OF THE 2018 SYMPOSIUM ON APPLICATION OF FLUID-STRUCTURE INTERACTION IN NAVAL ARCHITECTURE AND OFFSHORE RENEWABLE ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 292-297. DOI: 10.6052/0459-1879-18-445 |
[6] | Junhua Li, Wenbai Liu, Li Cui, Zhaochen Sun. A new method for location leak in long-distance pipeline[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 127-131. DOI: 10.6052/0459-1879-2010-1-2008-222 |
[7] | Dake Yi, T.C. Wang. Energy non-local model and new strain gradient theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 60-66. DOI: 10.6052/0459-1879-2009-1-2008-025 |
[8] | Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086 |
[9] | NEW SOLUTION SYSTEM FOR PLATE BENDING AND ITS APPLICatION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 173-184. DOI: 10.6052/0459-1879-1999-2-1995-020 |
[10] | A NEW DIGITAL SPECKLE CORRELATION METHOD AND ITS APPLICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(5): 599-607. DOI: 10.6052/0459-1879-1994-5-1995-586 |
1. |
王欣宇,王超,张梦娟,刘方正,李晗旸,王正林,贾鑫,宋兴飞,许光文,韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证. 化工进展. 2024(05): 2576-2586 .
![]() |