Citation: | Hua Fenfei, Luo Tong, Lei Jian, Liu Dabiao. Study of confined layer plasticity based on higher-order strain gradient plasticity theory. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 399-408. DOI: 10.6052/0459-1879-23-318 |
[1] |
Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 1994, 42(2): 475-487 doi: 10.1016/0956-7151(94)90502-9
|
[2] |
Ma Q, Clarke DR. Size dependent hardness of silver single crystals. Journal of Materials Research, 1995, 10(4): 853-863 doi: 10.1557/JMR.1995.0853
|
[3] |
Nix WD, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46(3): 411-425 doi: 10.1016/S0022-5096(97)00086-0
|
[4] |
Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Materialia, 1998, 46(14): 5109-5115 doi: 10.1016/S1359-6454(98)00153-0
|
[5] |
Hutchinson JW. Plasticity at the micron scale. International Journal of Solids and Structures, 2000, 37(1): 225-238
|
[6] |
Liu D, He Y, Dunstan DJ, et al. Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. International Journal of Plasticity, 2013, 41: 30-52 doi: 10.1016/j.ijplas.2012.08.007
|
[7] |
Xiang Y, Vlassak JJ. Bauschinger and size effects in thin-film plasticity. Acta Materialia, 2006, 54(20): 5449-5460 doi: 10.1016/j.actamat.2006.06.059
|
[8] |
Demir E, Raabe D. Mechanical and microstructural single-crystal Bauschinger effects: Observation of reversible plasticity in copper during bending. Acta Materialia, 2010, 58(18): 6055-6063 doi: 10.1016/j.actamat.2010.07.023
|
[9] |
Kiener D, Motz C, Grosinger W, et al. Cyclic response of copper single crystal micro-beams. Scripta Materialia, 2010, 63(5): 500-503 doi: 10.1016/j.scriptamat.2010.05.014
|
[10] |
Liu D, He Y, Dunstan DJ, et al. Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Physical Review Letters, 2013, 110(24): 244301 doi: 10.1103/PhysRevLett.110.244301
|
[11] |
Mu Y, Hutchinson JW, Meng WJ. Micro-pillar measurements of plasticity in confined Cu thin films. Extreme Mechanics Letters, 2014, 1: 62-69 doi: 10.1016/j.eml.2014.12.001
|
[12] |
Dunstan DJ, Ehrler B, Bossis R, et al. Elastic limit and strain hardening of thin wires in torsion. Physical Review Letters, 2009, 103(15): 155501 doi: 10.1103/PhysRevLett.103.155501
|
[13] |
Liu D, He Y, Tang X, et al. Size effects in the torsion of microscale copper wires: Experiment and analysis. Scripta Materialia, 2012, 66(6): 406-409 doi: 10.1016/j.scriptamat.2011.12.003
|
[14] |
Espinosa HD, Panico M, Berbenni S, et al. Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films. International Journal of Plasticity, 2006, 22(11): 2091-2117 doi: 10.1016/j.ijplas.2006.01.007
|
[15] |
Zhou C, LeSar R. Dislocation dynamics simulations of the Bauschinger effect in metallic thin films. Computational Materials Science, 2012, 54: 350-355 doi: 10.1016/j.commatsci.2011.09.031
|
[16] |
Senger J, Weygand D, Kraft O, et al. Dislocation microstructure evolution in cyclically twisted microsamples: a discrete dislocation dynamics simulation. Modelling and Simulation in Materials Science and Engineering, 2011, 19(7): 074004 doi: 10.1088/0965-0393/19/7/074004
|
[17] |
Liu D, He Y, Shen L, et al. Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Materials Science and Engineering A, 2015, 647: 84-90 doi: 10.1016/j.msea.2015.08.063
|
[18] |
Kiener D, Grosinger W, Dehm G. On the importance of sample compliance in uniaxial microtesting. Scripta Materialia, 2009, 60(3): 148-151 doi: 10.1016/j.scriptamat.2008.09.024
|
[19] |
Jang D, Greer JR. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nature Materials, 2010, 9(3): 215-219 doi: 10.1038/nmat2622
|
[20] |
Gurtin ME, Anand L. A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1624-1649 doi: 10.1016/j.jmps.2004.12.008
|
[21] |
Niordson CF, Legarth BN. Strain gradient effects on cyclic plasticity. Journal of the Mechanics and Physics of Solids, 2010, 58(4): 542-557 doi: 10.1016/j.jmps.2010.01.007
|
[22] |
熊宇凯, 赵建锋, 饶威等. 含冷却孔镍基合金次级取向效应的应变梯度晶体塑性有限元研究. 力学学报, 2023, 55(1): 120-133 (Xiong Yukai, Zhao Jianfeng, Rao Wei, et al. Secondary orientation effects of Ni-based alloys with cooling holes: A strain gradient crystal plasticity FEM study. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133 (in Chinese) doi: 10.6052/0459-1879-22-497
Xiong Yukai, Zhao Jianfeng, Rao Wei, et al. Secondary orientation effects of Ni-based alloys with cooling holes: A strain gradient crystal plasticity FEM study. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 120-133 (in Chinese) doi: 10.6052/0459-1879-22-497
|
[23] |
Fleck NA, Hutchinson JW. Strain gradient plasticity. Advances in Applied Mechanics, 1997, 33: 295-361
|
[24] |
Fleck NA, Hutchinson JW. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 2001, 49(10): 2245-2271 doi: 10.1016/S0022-5096(01)00049-7
|
[25] |
Gudmundson P. A unified treatment of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 2004, 52(6): 1379-1406 doi: 10.1016/j.jmps.2003.11.002
|
[26] |
Gurtin ME. A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. Journal of the Mechanics and Physics of Solids, 2004, 52(11): 2545-2568 doi: 10.1016/j.jmps.2004.04.010
|
[27] |
陈少华, 王自强. 应变梯度理论进展. 力学进展, 2003, 2: 207-216 (Chen Shaohua, Wang Ziqiang. Advances in strain gradient theory. Advances in Mechanics, 2003, 2: 207-216 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.02.006
Chen Shaohua, Wang Ziqiang. Advances in strain gradient theory. Advances in Mechanics, 2023, 2: 207-216 (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.02.006
|
[28] |
Yun G, Qin J, Huang Y, et al. A study of lower-order strain gradient plasticity theories by the method of characteristics. European Journal of Mechanics - A/Solids, 2004, 23(3): 387-394 doi: 10.1016/j.euromechsol.2004.02.003
|
[29] |
Evans AG, Hutchinson JW. A critical assessment of theories of strain gradient plasticity. Acta Materialia, 2009, 57(5): 1675-1688 doi: 10.1016/j.actamat.2008.12.012
|
[30] |
Martínez-Pañeda E, Niordson CF, Bardella L. A finite element framework for distortion gradient plasticity with applications to bending of thin foils. International Journal of Solids and Structures, 2016, 96: 288-299 doi: 10.1016/j.ijsolstr.2016.06.001
|
[31] |
Hua F, Liu D, Li Y, et al. On energetic and dissipative gradient effects within higher-order strain gradient plasticity: Size effect, passivation effect, and Bauschinger effect. International Journal of Plasticity, 2021, 141: 102994 doi: 10.1016/j.ijplas.2021.102994
|
[32] |
Kuroda M, Needleman A. A simple model for size effects in constrained shear. Extreme Mechanics Letters, 2019, 33: 100581 doi: 10.1016/j.eml.2019.100581
|
[33] |
Zhang X, Zhang B, Mu Y, et al. Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Materialia, 2017, 138: 224-236 doi: 10.1016/j.actamat.2017.07.053
|
[34] |
Martínez-Pañeda E, Deshpande VS, Niordson CF, et al. The role of plastic strain gradients in the crack growth resistance of metals. Journal of the Mechanics and Physics of Solids, 2019, 126: 136-150 doi: 10.1016/j.jmps.2019.02.011
|
[35] |
Panteghini A, Bardella L. On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 840-865 doi: 10.1016/j.cma.2016.07.045
|
[36] |
Mu Y, Zhang X, Hutchinson JW, et al. Dependence of confined plastic flow of polycrystalline Cu thin films on microstructure. MRS Communications, 2016, 6(3): 289-294 doi: 10.1557/mrc.2016.20
|
[37] |
Mu Y, Zhang X, Hutchinson JW, et al. Measuring critical stress for shear failure of interfacial regions in coating/interlayer/substrate systems through a micro-pillar testing protocol. Journal of Materials Research, 2017, 32(8): 1421-1431 doi: 10.1557/jmr.2016.516
|
[38] |
Liu D, Dunstan DJ. Material length scale of strain gradient plasticity: A physical interpretation. International Journal of Plasticity, 2017, 98: 156-174 doi: 10.1016/j.ijplas.2017.07.007
|
[39] |
Evans AG, Hutchinson JW. A critical assessment of strain gradient plasticity. Acta Materialia, 2009, 57(5): 1675-1688
|
[40] |
Al-Rub RKA, Voyiadjis GZ. A physically based gradient plasticity theory. International Journal of Plasticity, 2006, 22(4): 654-684 doi: 10.1016/j.ijplas.2005.04.010
|
[41] |
Nielsen KL, Niordson C. A 2 D finite element implementation of the Fleck–Willis strain-gradient flow theory. European Journal of Mechanics - A/Solids, 2013, 41: 134-142 doi: 10.1016/j.euromechsol.2013.03.002
|
[42] |
Fleck NA, Willis JR. Strain gradient plasticity: Energetic or dissipative? Acta Mechanica Sinica, 2015, 31(4): 465-472
|
[43] |
Fleck NA, Willis JR. A mathematical basis for strain-gradient plasticity theory-Part I: Scalar plastic multiplier. Journal of the Mechanics and Physics of Solids, 2009, 57(1): 161-177 doi: 10.1016/j.jmps.2008.09.010
|
[44] |
Gurtin ME, Anand L. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization. Journal of the Mechanics and Physics of Solids, 2009, 57(3): 405-421 doi: 10.1016/j.jmps.2008.12.002
|
[45] |
Kuroda M, Tvergaard V, Needleman A. Constraint and size effects in confined layer plasticity. Journal of the Mechanics and Physics of Solids, 2021, 149: 104328 doi: 10.1016/j.jmps.2021.104328
|
[46] |
Polizzotto C. Interfacial energy effects within the framework of strain gradient plasticity. International Journal of Solids and Structures, 2009, 46(7): 1685-1694
|
[47] |
Bardella L, Panteghini A. Modelling the torsion of thin metal wires by distortion gradient plasticity. Journal of the Mechanics and Physics of Solids, 2015, 78: 467-492 doi: 10.1016/j.jmps.2015.03.003
|